Math 73/103: Fall 2020 Lecture 2

Dana P. Williams

Dartmouth College

September 16, 2020

- We should be recording!
- Does anyone have any questions or comments about the lecture or the homework?
- As I mentioned, I hope that you have the bandwidth to keep your video on during the class meeting. This makes it seem a little more "real" for me. But this is voluntary.

Proposition

Let (X, ρ) be a metric space and $E \subset X$ a subspace. Then $U \subset E$ is open in E if and only if there is an open set V in X such that $U = V \cap E$.

Proof.

As usual, let
$$B_r(x) = \{ y \in X : \rho(y, x) < r \}$$
 and write $B_r^E(x) = \{ y \in E : \rho(y, x) < r \} = B_r(x) \cap E$.

Now suppose V is open in X and $U = V \cap E$. Suppose $x \in U$. Then there is a r > 0 such that $B_r(x) \subset V$. Then of course $B_r^E(x) = B_r(x) \cap E \subset V \cap E = U$. Hence U is open in E.

The Converse

Proof.

Now suppose that U is open in E. If $x \in U$, then there is a r(x) > 0 such that $B_{r(x)}^{E}(x) = B_{r(x)}(x) \cap E \subset U$. Let $V = \bigcup_{x \in U} B_{r(x)}(x)$. Then V is open in X and

$$V \cap E = \left(\bigcup_{x \in U} B_{r(x)}(x)\right) \cap E = \bigcup_{x \in U} B^{E}_{r(x)}(x) \subset U.$$

But if $x \in U$, then $x \in B_{r(x)}(x) \subset V$. Hence $U \subset V \cap E$ and $U = V \cap E$ as required.

Corollary

If E is a subspace of (X, ρ) , then then the metric topology, τ_E on E is

$$\tau_{\mathsf{E}} = \{ \mathsf{V} \cap \mathsf{E} : \mathsf{V} \in \tau_{\rho} \}$$

where τ_{ρ} is the metric topology on X.

Let (X, ρ) be a metric space. Then $F \subset X$ is closed if $F^c := X \setminus F$ is open.

Proposition

Let (X, ρ) be a metric space.

- **1** Both X and \emptyset are closed.
- **2** If F and G are closed, then so is $F \cup G$.
- **3** If F_a is closed for all $a \in A$, then $\bigcap_{a \in A} F_a$ is also closed.

Proof.

This is straightforward.

If E is a subset of metric space X, then

$$\overline{E} := \bigcap \{ F \subset X : F \text{ is closed and } E \subset F \}$$

is called the closure of E in X.

Remark

Note that \overline{E} is the smallest closed set containing E.

Lemma

We have $x \in \overline{E}$ if and only if $B_r(x) \cap E \neq \emptyset$ for all r > 0.

Proof.

Suppose that $x \in \overline{E}$. Suppose to the contrary that there is a r > 0 such that $B_r(x) \cap E = \emptyset$. Let $F = X \setminus B_r(x)$. Then F is closed and $E \subset F$. Therefore $\overline{E} \subset F$ and $x \notin \overline{E}$ which is a contradiction. Now suppose that $B_r(x) \cap E \neq \emptyset$ for all r > 0. Suppose to the contrary that $x \notin \overline{E}$. Then x is an element of the open set $X \setminus \overline{E}$. Hence there is a r > 0 such that $B_r(x) \subset X \setminus E$. But then $B_r(x) \cap E = \emptyset$.

- Time to take a Break.
- But first, let's see if there are questions or comments.

• We should be recording.

Definition

Let (X, ρ) be a metric space and suppose that (x_n) is a sequence in X. We say that (x_n) converges to $x \in X$ if for all $\epsilon > 0$ there is a $N \in \mathbf{N}$ such that $n \ge N$ implies $\rho(x_n, x) < \epsilon$. If (x_n) converges to x, then we write $\lim_{n \to \infty} x_n = x$ or sometimes $x_n \to x$.

Lemma

Limits, if they exist, are unique. That is if $x_n \rightarrow x$ and $x_n \rightarrow y$, then x = y.

Proof.

If $x \neq y$, then let $\epsilon = \frac{1}{2}\rho(x, y)$ and find a contradiction.

If (x_n) is a sequence in X and if $n_1 < n_2 < \cdots$ forms an infinite subset of **N**, then the sequence (y_k) , where $y_k = x_{n_k}$, is called a subsequence if (x_n) .

Remark

Normally, we simply write (x_{n_k}) and dispense with introducing y_k . Note that if (x_{n_k}) is a subsequence, then $n_k \ge k$ for all k. Then it is easy to prove that if if $x_n \to x$, then any subsequence of (x_n) also converges to x.

Example

Suppose that X is a metric space and (x_n) is a sequence that does not converge to x. Then there is a r > 0 and a subsequence (x_{n_k}) such that $x_{n_k} \notin B_r(x)$ for all k.

Proof.

There must be a r > 0 so that for all $N \in \mathbf{N}$, the statement $n \ge N$ implies $x_n \in B_r(x)$ is false. Hence there is some n_1 such that $x_{n_1} \notin B_r(x)$. Now suppose we have found $n_1 < n_2 < \cdots < n_k$ such that $x_{n_j} \notin B_r(x)$ for all $1 \le j \le k$. Since $n \ge n_k$ does not imply $x_n \in B_r(x)$, there is a $n_{k+1} > n_k$ such that $x_{n_{k+1}} \notin B_r(x)$. This produces the required subsequence (x_{n_k}) .

If *E* is a subset of a metric space *X*, then $x \in X$ is a limit point of *E* if there is a sequence $(x_n) \subset E$ such that $x_n \to x$ in *X*.

Proposition

A subspace E of a metric space X is closed if and only if it contains all of its limit points.

Proof.

I'm leaving this as homework. I also asked you to formulate and prove the appropriate sequential characterization of open sets!

Suppose that ρ and σ are metrics on X. Then we say ρ and σ are equivalent if they generate the same metric topology.

Lemma

Two metrics ρ and σ on X are equivalent if for all $x \in X$ and all $x \ge 0$ there are x' = 0 such that

r > 0 there are r', r'' > 0 such that

1
$$B^{
ho}_{r'}(x) \subset B^{\sigma}_r(x)$$
 and

$$a B^{\sigma}_{r''}(x) \subset B^{\rho}_r(x).$$

Proof.

Using (1), you can show $U \in \tau_{\sigma}$ implies $U \in \tau_{\rho}$. Using (2), it follows that $U \in \tau_{\rho}$ implies $U \in \tau_{\sigma}$.

Lemma

Let (X, ρ) be a metric space. Then $d(x, y) := \frac{\rho(x, y)}{1 + \rho(x, y)}$ is an equivalent metric on X.

Proof.

We've already seen that *d* is a metric. Also it is immediate that $d(x, y) \leq \rho(x, y)$. Hence for all $x \in X$, $B_r^{\rho}(x) \subset B_r^d(x)$. On the other hand, if $\rho(x, y) \leq 1$, then $\rho(x, y) \leq 2d(x, y)$. Let $r' = \min\{1, r\}$. Then if $y \in B_{r'/2}^d(x)$, we have $d(y, x) < \frac{r'}{2} \leq \frac{1}{2}$. A little algebra implies that $\rho(y, x) < 1$. Then $\rho(y, x) \leq 2d(y, x) < r' \leq r$. That is, $B_{r'/2}^d(x) \subset B_r^{\rho}(x)$.

Remark

The previous result shows every metric space X admits an equivalent bounded metric—bounded by 1 in fact. There is nothing special about $d(x, y) = \rho(x, y)/(1 + \rho(x, y))$. You are welcome to prove a similar result for

$$\overline{\rho}(x,y) = \min\{1,\rho(x,y)\}.$$

That is, you can show that $\overline{\rho}$ is a metric on X and that it is equivalent to ρ .

Topology vs Metric

Definition

If E is a subspace of (X, ρ) , then the diameter of E is

$$diam(E) = \sup\{\rho(x, y) : x, y \in E\}.$$

We say that *E* is bounded if diam(*E*) $< \infty$.

Remark

If ρ and σ are strongly equivalent metrics on X, then $E \subset X$ is bounded with respect to ρ if and only if it is bounded with respect to σ . However, this need not be the case for equivalent metrics. Note that **R** is unbounded with respect to its usual metric, but it is bounded with respect to the equivalent metric

$$d(x,y)=\frac{|x-y|}{1+|x-y|}.$$

Let $f : (X, \rho) \to (Y, \sigma)$ be a function. We say that f is continuous at $x_0 \in X$ if for all $\epsilon > 0$ there is a $\delta > 0$ such that

$$f(B^{\boldsymbol{\rho}}_{\delta}(x_0)) \subset B^{\boldsymbol{\sigma}}_{\epsilon}(f(x_0)). \tag{1}$$

If f is continuous at all $x_0 \in X$, then we just say f is continuous.

Remark

Condition (1) is equivalent to $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\rho(x, x_0) < \delta \Longrightarrow \sigma(f(x), f(x_0)) < \epsilon$.

The First Question

Proposition

Let $f : (X, \rho) \to (Y, \sigma)$ be a function. Then the following are equivalent.

- f is continuous at $x_0 \in X$.
- **2** If (x_n) is any sequence converging to x_0 in X, then $f(x_n) \rightarrow f(x_0)$.
- If V is any neighborhood of f(x₀) in Y, then f⁻¹(V) is a neighborhood of x₀ in X.

Proof.

You should be able to give a proof of this off the top of your head or agree never to teach calculus! The only tricky bit is observing that if $f^{-1}(V)$ is not a neighborhood of x_0 , then there must be a sequence (x_n) converging to x_0 in X with $x_n \notin f^{-1}(V)$ for all n.

Continuous Functions

Corollary

A function $f : (X, \rho) \to (Y, \sigma)$ is continuous if and only if $f^{-1}(V)$ is open in X for every open set $V \subset Y$.

Definition

We say that $f: (X, \rho) \to (Y, \sigma)$ is uniformly continuous on X if for all $\epsilon > 0$ there is a $\delta > 0$ such that $\rho(x, y) < \delta$ implies $\sigma(f(x), f(y)) < \epsilon$.

Remark

If f is uniformly continuous, then it is continuous: given any $x_0 \in X$ and any $\epsilon > 0$ we can choose a δ —depending only on ϵ and not on x_0 —such that $\rho(x, x_0) < \delta$ implies $\sigma(f(x), f(x_0)) < \epsilon$. However, if we only assume f is continuous, then our choice of δ may depend on the choice of x_0 —that is, $\delta = \delta(\epsilon, x_0)$ —and we may not be able to find a δ that works for all x_0 at the same time. An example is $f(x) = x^2$ from **R** to **R**.

- Time for another recording Break.
- First, questions or comments?
- Ok, restart the recording.

We say that a sequence (x_n) in a metric space (X, ρ) is Cauchy if for all $\epsilon > 0$ there is a $N \in \mathbb{N}$ such that $n, m \ge N$ implies $\rho(x_n, x_m) < \epsilon$.

Example

If (x_n) converges in X, then (x_n) is cauchy: Given $\epsilon > 0$, there is a N such that $n \ge N$ implies $\rho(x_n, x_0) < \epsilon/2$. But then if $n, m \ge N$, we have $\rho(x_n, x_m) \le \rho(x_n, x_0) + \rho(x_0, x_m) < \epsilon$.

Not so Fast

Example

Let X = (0, 2) with the usual metric. If $x_n = \frac{1}{n}$, then (x_n) is Cauchy in X, but does not converge in X.

Example

Of course the problem in the previous example is that some idiot took 0 away from us. But in general, the "missing point" might be more subtle. Let X = C([0,3]) equipped with the metric ρ associated to the norm $\|f\|_1 = \int_0^3 |f(t)| dt$. Let f_n be the function with graph

I leave it to you to check that (f_n) is Cauchy in (X, ρ) and that (f_n) does not converge in X.

A metric space is complete if every Cauchy sequence in X is convergent.

Lemma (Cauchy Sequences Want to Converge)

If a Cauchy sequence (x_n) has a convergent subsequence, then it converges.

Proof.

I leave this as homework exercise.

Example

Both **R** and **C** are complete with respect to their usual metrics.

Theorem

For all $1 \le p \le \infty$, ℓ^p is complete (in the metric induced from $\|\cdot\|_p$). Furthermore, $\ell^{\infty}(X)$ is complete for any set X.

Proof.

To start with let $1 \le p < \infty$ and suppose that (x_n) is a Cauchy sequence in ℓ^p . Since x_n is itself a sequence, we will write $x_n(k)$ for the k^{th} -term of x_n . Note that for each k, $|x_n(k)| \le ||x_n||_p = \left(\sum_{k=1}^{\infty} |x_n(k)|^p\right)^{\frac{1}{p}}$. In particular, $(x_n(k))_{n=1}^{\infty}$ is Cauchy in **C** for all k. Hence we can let $x_0(k) = \lim_{n \to \infty} x_n(k)$. To finish the proof we need to establish that $x_0 \in \ell^p$ and that $x_n \to x_0$ in ℓ^p . Since $\rho(x_n, x_0) = ||x_n - x_0||_p$, this means showing

 $||x_n - x_0||_p \rightarrow 0$ with n.

The Proof

Continued.

Fix $\epsilon > 0$. Let N be such that $n, m \ge N$ implies $\rho(x_n, x_m) = ||x_n - x_m||_p < \frac{\epsilon}{2}$. Let $n \ge N$. Then for any $r \in \mathbf{N}$,

$$\sum_{k=1}^{r} |x_n(k) - x_0(k)|^p = \lim_{m \to \infty} \sum_{k=1}^{r} |x_n(k) - x_m(k)|^p$$
$$\leq \limsup_{m \to \infty} ||x_n - x_m||_p^p \leq \left(\frac{\epsilon}{2}\right)^p.$$

Since this holds for any r, we see that $||x_n - x_0||_p \le \frac{\epsilon}{2} < \epsilon$. This also implies that $x_n - x_0 \in \ell^p$. Since ℓ^p is a vector space, $||x_0||_p \le ||x_0 - x_N||_p + ||x_N||_p \le \epsilon + ||x_N||_p < \infty$, and $x_0 \in \ell^p$. Now the above shows that $x_n \to x_0$ in ℓ^p and we're done when $1 \le p < \infty$. The proof for $\ell^\infty(X)$ is similar, but quite a bit easier. I leave that as an exercise.

Low Hanging Friut

Proposition

Let X be a complete metric space. Then a subspace $E \subset X$ is complete if and only if E is closed.

Proof.

Suppose that *E* is closed. Let (x_n) be a Cauchy sequence in *E*. Then (x_n) is Cauchy in *X* and hence converges to some $x_0 \in X$. But *E* is closed if and only if it contains all its limit points. Hence $x_0 \in E$ since *E* is closed. Therefore (x_n) converges in *E*, and *E* is complete.

Now suppose that *E* is complete and $x_0 \in X$ is a limit point for *E*. Suppose that (x_n) is a sequence in *E* that converges to some x_0 . Then (x_n) is Cauchy in *E*. Hence (x_n) converges to some $y \in E$. But limits are unique, so $x_0 = y \in E$. Therefore *E* contains all its limit points and is closed.

Notation

If X is a metric space, then we will write C(X) for the complex vector-space of continuous complex-valued functions on X. Let also let $C_b(X)$ be the vector subspace of bounded functions in C(X).

Remark

We can view $C_b(X)$ as a (vector) subspace of $\ell^{\infty}(X)$. Hence it inherits the supremun norm which induces the subspace metric. Note that (f_n) converges to f in $C_b(X)$ or $\ell^{\infty}(X)$ if and only if $\rho(f_n, f) = ||f_n - f||_{\infty} \to 0$ with n. Thus $f_n \to f$ if and only if for all $\epsilon > 0$, there is a N such that $n \ge N$ implies $|f_n(x) - f(x)| < \epsilon$ for all $x \in X$. That is, $f_n \to f$ in $C_b(X)$ or $\ell^{\infty}(X)$ if and only if $f_n \to f$ uniformly on X. For this reason the supremum norm $|| \cdot ||_{\infty}$ is often also called the uniform norm.

Subspace Magic

Proposition

Suppose that X is a metric space and that $f_n \in C(X)$ for all $n \in \mathbb{N}$. If (f_n) converges uniformly to a function $f : X \to \mathbb{C}$, then f is continuous.

Remark

Colloquially, the uniform limit of continuous functions is continuous.

Proof.

This is also part of the requirements for your "analyst license". I'm letting you show off for homework.

Corollary

If X is a metric space, then $C_b(X)$ is complete in the uniform norm.

Proof.

The previous proposition implies that $C_b(X)$ is a closed subspace of the complete metric space $\ell^{\infty}(X)$.

• That is enough for now.