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Getting Started

We should be recording!

Questions?

Problems 36–45 will be due a week from Friday—Friday,
November 6th. We’re taking Wednesday next week off in case
anyone needs to recover from Tuesday.

I made some minor alterations to the problems assigned for
today. So if you are working ahead, you may want to check
the assignments page again.

I added some comments on the Cantor set, ternary expansions,
and the Cantor-Lebesgue function on the assignment page.
That material is purely for fun and not required. page.
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Absolute Continuity

Definition

Suppose that µ and ν are two measures on (X ,M). (Remember
that without an adjective, “measure” always means “positive
measure”.) We say that µ is absolutely continuous with respect
to µ—written ν � µ—if µ(E ) = 0 implies that ν(E ) = 0.

Example (See Lecture 14)

Suppose that f : (X ,M)→ [0,∞] is measurable. Then

ν(E ) =

∫
E
f (x) dµ(x) for E ∈M

defines a measure ν on (X ,M) and ν � µ. Furthermore, if
g : X → [0,∞] is measurable, then∫

X
g(x) dν(x) =

∫
X
g(x)f (x) dµ(x). return (‡)
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A Bit Better

Lemma

Suppose that f , µ and ν are as in the previous example . Then if
g ∈ L1(X ,M, ν), we have gf ∈ L1(X ,M, µ) and∫

X
g(x) dν(x) =

∫
X
g(x)f (x) dµ(x).

Proof.

I’ll leave the proof for a homework problem.
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σ-finite measures

Definition

We say that (X ,M, µ) is a σ-finite measure space or that µ is a
σ-finite measure if we can find countably many sets An ∈M such
that X =

⋃∞
n=1 An such that µ(An) <∞ for all n.

Remark

If (X ,M, µ) is σ-finite we can alternatively insist that the An

above are either pairwise disjoint or nested with An ⊂ An+1. In the
first case, “disjointify”, in the second let A′n = A1 ∪ · · · ∪ An.

Example

Lebesgue measure on R is a σ-finite measure (HW#37(a)).
However, counting measure on (R,P(R)) is not.
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Radon-Nikodym Theorem

Theorem (Radon-Nikodym)

Suppose that µ and ν are σ-finite measures on (X ,M) such that
ν � µ. Then there is a measurable function f : X → [0,∞) such
that

ν(E ) =

∫
E
f (x) dµ(x) for all E ∈M. (‡)

If g : X → [0,∞) is another such function satisfying (‡), then
f = g for µ-almost all x .

Proof.

Assume to begin with that µ(X ) <∞ and ν(X ) <∞. For all
c > 0, let {P(c),N(c) } be a Hahn Decomposition for ν − cµ.
Now we “disjointify”

⋃∞
k=1N(kc).
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Proof

Proof Continued.

That is,

A1 = N(c), and for k ≥ 2,

Ak = N(kc) \
k−1⋃
j=1

N(jc) = N(kc) ∩
k−1⋂
j=1

P(jc).

Thus if E ⊂ Ak is measurable, then E ⊂ N(kc) implies
ν(E )− kcµ(E ) ≤ 0 and E ⊂ P

(
(k − 1)c

)
implies

ν(E )− (k − 1)cµ(E ) ≥ 0. Therefore, E ⊂ Ak implies

(k − 1)cµ(E ) ≤ ν(E ) ≤ kcµ(E ). return (∗)
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Proof

Proof Continued.

Now let

B = X \
∞⋃
k=1

Ak = X \
∞⋃
k=1

N(kc) =
(⋃

k

N(kc)
)C

=
∞⋂
k=1

P(kc)

Since B ⊂ P(kc),

0 ≤ kcµ(B) ≤ ν(B) ≤ ν(X ) <∞ for all k ∈ N.

Thus µ(B) = 0. Since ν � µ, we also have ν(B) = 0.
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Proof

Proof Continued.

Define

gc(x) =

{
(k − 1)c if x ∈ Ak , and

0 if x ∈ B.

Then g is well-defined on all of X . Since ν(B) = 0 = µ(B) and in
view of Equation (∗) , we have∫

E
gc(x) dµ(x) ≤ ν(E ) ≤

∫
E

(gc + c)(x) dµ(x)

≤
∫
E
gc(x) dµ(x) + cµ(X ).

Thus, if we let fn = g2−n , then for all n,m ∈ N we have∫
E
fn(x) dµ(x) ≤ ν(E ) ≤

∫
E
fm(x) dµ(x) + 2−mµ(X ). return (‡)
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Proof

Proof Continued.

Since everything in sight is finite, we have for all n ≥ m ≥ 1 and
E ∈M, ∣∣∣∫

E

(
fn(x)− fm(x)

)
dµ(x)

∣∣∣ ≤ 2−mµ(X ).

Since this holds for E+ = { x : fn(x)− fm(x) ≥ 0 } as well as
E− = { x : fn(x)− fm(x) ≤ 0 }, we must have∫

X
|fn(x)− fm(x)| dµ(x) ≤ 2−m+1µ(X ) when n ≥ m ≥ 1.

Therefore { fn } is Cauchy in L1(µ), and there is a f ∈ L1(µ) such
that fn → f in L1(µ).
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Proof

Proof Continued.

Since fn → f in L1(µ), there is a subsequence (fnk )→ f pointwise
µ-almost everywhere. Thus we can assume that f (x) ≥ 0 for all x
(Why?). Since∣∣∣∫

E
fn dµ−

∫
E
f dµ

∣∣∣ ≤ ∫
E
|fn − f | dµ = ‖fn − f ‖1 → 0,

we have lim
n

∫
E
fn(x) dµ(x) =

∫
E
f (x) dµ(x). Now by Equation (‡) it

follows that

ν(E ) = lim
n→∞

∫
E
fn(x) dµ(x) =

∫
E
f (x) dµ(x).

This completes the existence part of the proof when µ and ν are
finite measures. The uniqueness statement is left for homework.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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The General Case

Proof of the General Case.

Since µ and ν are both σ-finite, we can suppose that
X =

⋃∞
n=1 Xn with µ(Xn) <∞ and ν(Xn) <∞ and Xn ⊂ Xn+1.

Applying the previous argument to (Xn,M(Xn)) we have a
function hn : Xn → [0,∞) such that

ν(E ) =

∫
E
hn(x) dµ(x) for all E ∈M(Xn).

We can extend hn to all of X be setting hn(x) = 0 if x /∈ Xn. If
n ≤ m and E ⊂ Xn is measurable, then∫

E
hn(x) dµ(x) = ν(E ) =

∫
E
hm(x) dµ(x).

Since E ⊂ Xn is arbitrary, hn(x) = hm(x) for µ-almost all x ∈ Xn.
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Proof

Proof Continued.

Let
fn(x) = sup{ h1(x), . . . , hn(x) }

Then fn ∼ hn. Furthermore, fn ↗ f for a measurable function
f : X → [0,∞]. If E ∈M, then

ν(E ) = lim
n→∞

ν(E ∩ Xn) = lim
n

∫
E
hn(x) dµ(x)

= lim
n

∫
E
fn(x) dµ(x)

MCT
=

∫
E
f (x) dµ(x).
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One More Thing

Proof Continued.

Let A = { x : f (x) =∞}. Since∫
E
f (x) dµ(x) =

∫
E
hn(x) dµ(x) for all E ∈M(Xn),

it follows that f (x) = hn(x) for µ-almost all x ∈ Xn. Therefore
µ(A ∩ Xn) = 0. Thus

µ(A) = lim
n
µ(A ∩ Xn) = 0.

Therefore, we can choose f so that f (X ) ⊂ [0,∞).

Uniqueness is a homework problem.
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Radon-Nikodym Derivatives

Remark

In the preceding theorem, we call the function f : X → [0,∞) such
that

ν(E ) =

∫
E
f (x) dµ(x)

“the” Radon-Nikodym derivative of ν with respect to µ. The
notation f = dν

dµ is often employed. Thus, by our homework

problem, for all g ∈ L1(ν), we have g dν
dµ ∈ L

1(µ) and∫
X
g dν =

∫
X
g
dν

dµ
dµ

which may at least explain the terminology and notation. We get
away with saying “the” as dν

dµ is determined µ-almost everywhere.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Outer Measures Again

Definition

Recall that an algebra of subsets of a set X is a collection
A ⊂ P(X ) containing X which is closed under complements and
finite unions. A function ρ : A → [0,∞] is called a pre-measure on
A if ρ(∅) = 0 and whenever {En }∞n=1 ⊂ A is a pairwise disjoint
family such that

⋃∞
n=1 En ∈ A, then

ρ
( ∞⋃
n=1

En

)
=
∞∑
n=1

ρ(En).

Remark

If the requirement that a pre-measure be countably additive on the
algebra A seems a high bar, we can be comforted by the
observation that algebras are much more tame creatures that
σ-algebras. So unlike the case for measures, we will be able to
build interesting pre-measures—well, at least one anyway.
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Why Pre-Measures?

Proposition

Let A be an algebra of sets in X and ρ : A → [0,∞] a pre-measure
on A.

1 The map ρ∗ : P(X )→ [0,∞] given by

ρ∗(E ) = inf
{ ∞∑

k=1

ρ(Ak) : each Ak ∈ A and E ⊂
⋃
k

Ak

}
is an outer measure on X .

2 ρ∗(A) = ρ(A) for all A ∈ A.

3 Every A ∈ A is ρ∗-measurable.

Proof.

We will leave this as a homework exercise.
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Measures from Pre-Measures

Theorem

Suppose that ρ is a pre-measure on an algebra A of sets in X .
Then there is a measure µ on the σ-algebra M :=M(A)
generated by A such that µ(E ) = ρ∗(E ) for all E ∈M. In
particular, µ(A) = ρ(A) for all A ∈ A. If ν is any other measure on
M extending ρ on A, then ν(E ) ≤ µ(E ) for all E ∈M with
equality if µ(E ) <∞. If ρ is σ-finite, then µ is the unique
extension of ρ to M.

Proof.

We already know that ρ∗ restricts to a measure on the
ρ∗-measurable sets M∗. Since you will prove that A ⊂M∗, we
have M :=M(A) ⊂M∗. So we just let µ = ρ∗|M. This gives us
an extension µ as claimed.
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Proof

Proof of Uniqueness.

Suppose ν is a measure on M extending ρ. If E ∈M and E ⊂
⋃

k Ak

with Ak ∈ A, then

ν(E ) ≤
∑
k

ν(Ak) =
∑
k

ρ(Ak).

Therefore ν(E ) ≤ ρ∗(E ) = µ(E ). Also, if A =
⋃

k Ak , then

ν(A) = lim
n
ν
( n⋃
k=1

Ak

)
= lim

n
µ
( n⋃
k=1

Ak

)
= µ(A).

If µ(E ) <∞ and ε > 0, then we can choose that Ak ’s so that
µ(A) ≤

∑
k µ(Ak) =

∑
k ρ(Ak) < ρ∗(E ) + ε = µ(E ) + ε. Hence

µ(A \ E ) < ε. Then

µ(E ) ≤ µ(A) = ν(A) = ν(E ) + ν(A \ E )

≤ ν(E ) + µ(A \ E ) ≤ ν(E ) + ε.

Since ε > 0 is arbitrary, µ(E ) ≤ ν(E ). Hence µ(E ) = ν(E ).
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Proof

Proof Continued.

In the general σ-finite case, suppose that X =
⋃

Ak with Ak ∈ A
and ρ(Ak) <∞. We can assume that the Ak are pairwise disjoint.
Then for any E ∈M,

µ(E ) =
∑
k

µ(E ∩ Ak) =
∑
k

ν(E ∩ Ak) = ν(E ).

Thus ν = µ in the σ-finite case.

Dana P. Williams Math 73/103: Fall 2020 Lecture 20



That’s Enough for Today

That is enough for now.
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