Math 73/103: Fall 2020 Lecture 20

Dana P. Williams

Dartmouth College

Wednesday, October 28, 2020

- We should be recording!
- Questions?
- Problems 36–45 will be due a week from Friday—Friday, November 6th. We're taking Wednesday next week off in case anyone needs to recover from Tuesday.
- I made some minor alterations to the problems assigned for today. So if you are working ahead, you may want to check the assignments page again.
- I added some comments on the Cantor set, ternary expansions, and the Cantor-Lebesgue function on the assignment page. That material is purely for fun and not required. page.

Absolute Continuity

Definition

Suppose that μ and ν are two measures on (X, \mathcal{M}) . (Remember that without an adjective, "measure" always means "positive measure".) We say that μ is absolutely continuous with respect to μ —written $\nu \ll \mu$ —if $\mu(E) = 0$ implies that $\nu(E) = 0$.

Example (See Lecture 14)

Suppose that $f:(X,\mathcal{M})
ightarrow [0,\infty]$ is measurable. Then

$$u(E) = \int_E f(x) d\mu(x) \quad \text{for } E \in \mathcal{M}$$

defines a measure ν on (X, \mathcal{M}) and $\nu \ll \mu$. Furthermore, if $g: X \to [0, \infty]$ is measurable, then

$$\int_X g(x) \, d\nu(x) = \int_X g(x) f(x) \, d\mu(x). \quad \text{(\ddagger)} \quad (\ddagger)$$

Lemma

Suppose that f, μ and ν are as in the previous example. Then if $g \in \mathcal{L}^1(X, \mathcal{M}, \nu)$, we have $gf \in \mathcal{L}^1(X, \mathcal{M}, \mu)$ and

$$\int_X g(x) \, d\nu(x) = \int_X g(x) f(x) \, d\mu(x).$$

Proof.

I'll leave the proof for a homework problem.

Definition

We say that (X, \mathcal{M}, μ) is a σ -finite measure space or that μ is a σ -finite measure if we can find countably many sets $A_n \in \mathcal{M}$ such that $X = \bigcup_{n=1}^{\infty} A_n$ such that $\mu(A_n) < \infty$ for all n.

Remark

If (X, \mathcal{M}, μ) is σ -finite we can alternatively insist that the A_n above are either pairwise disjoint or nested with $A_n \subset A_{n+1}$. In the first case, "disjointify", in the second let $A'_n = A_1 \cup \cdots \cup A_n$.

Example

Lebesgue measure on **R** is a σ -finite measure (HW#37(a)). However, counting measure on (**R**, \mathcal{P} (**R**)) is not.

Theorem (Radon-Nikodym)

Suppose that μ and ν are σ -finite measures on (X, \mathcal{M}) such that $\nu \ll \mu$. Then there is a measurable function $f : X \to [0, \infty)$ such that

$$u(E) = \int_E f(x) \, d\mu(x) \quad \text{for all } E \in \mathcal{M}.$$
 (‡)

If $g : X \to [0, \infty)$ is another such function satisfying (\ddagger) , then f = g for μ -almost all x.

Proof.

Assume to begin with that $\mu(X) < \infty$ and $\nu(X) < \infty$. For all c > 0, let $\{P(c), N(c)\}$ be a Hahn Decomposition for $\nu - c\mu$. Now we "disjointify" $\bigcup_{k=1}^{\infty} N(kc)$.

That is,

$$A_1 = N(c), \quad ext{and for } k \geq 2, \ A_k = N(kc) \setminus igcup_{j=1}^{k-1} N(jc) = N(kc) \cap igcap_{j=1}^{k-1} P(jc).$$

Thus if $E \subset A_k$ is measurable, then $E \subset N(kc)$ implies $\nu(E) - kc\mu(E) \le 0$ and $E \subset P((k-1)c)$ implies $\nu(E) - (k-1)c\mu(E) \ge 0$. Therefore, $E \subset A_k$ implies $(k-1)c\mu(E) \le \nu(E) \le kc\mu(E)$. From

(*)

Now let

$$B = X \setminus \bigcup_{k=1}^{\infty} A_k = X \setminus \bigcup_{k=1}^{\infty} N(kc) = \left(\bigcup_k N(kc)\right)^C = \bigcap_{k=1}^{\infty} P(kc)$$

Since $B \subset P(kc)$,

 $0 \le kc\mu(B) \le \nu(B) \le \nu(X) < \infty$ for all $k \in \mathbf{N}$.

Thus $\mu(B) = 0$. Since $\nu \ll \mu$, we also have $\nu(B) = 0$.

Proof

Proof Continued.

Define

$$g_c(x) = egin{cases} (k-1)c & ext{if } x \in A_k, ext{ and} \ 0 & ext{if } x \in B. \end{cases}$$

Then g is well-defined on all of X. Since $\nu(B) = 0 = \mu(B)$ and in view of \bullet Equation (*), we have

$$\int_{E} g_{c}(x) d\mu(x) \leq \nu(E) \leq \int_{E} (g_{c} + c)(x) d\mu(x)$$
$$\leq \int_{E} g_{c}(x) d\mu(x) + c\mu(X)$$

Thus, if we let $f_n = g_{2^{-n}}$, then for all $n, m \in \mathbf{N}$ we have

$$\int_E f_n(x) d\mu(x) \le \nu(E) \le \int_E f_m(x) d\mu(x) + 2^{-m}\mu(X).$$
(‡)

Since everything in sight is finite, we have for all $n \ge m \ge 1$ and $E \in \mathcal{M}$,

$$\left|\int_{E} \left(f_n(x) - f_m(x)\right) d\mu(x)\right| \leq 2^{-m} \mu(X).$$

Since this holds for $E^+ = \{ x : f_n(x) - f_m(x) \ge 0 \}$ as well as $E^- = \{ x : f_n(x) - f_m(x) \le 0 \}$, we must have

$$\int_X |f_n(x) - f_m(x)| \, d\mu(x) \leq 2^{-m+1}\mu(X) \quad \text{when } n \geq m \geq 1.$$

Therefore $\{f_n\}$ is Cauchy in $L^1(\mu)$, and there is a $f \in \mathcal{L}^1(\mu)$ such that $f_n \to f$ in $L^1(\mu)$.

Proof

Proof Continued.

Since $f_n \to f$ in $L^1(\mu)$, there is a subsequence $(f_{n_k}) \to f$ pointwise μ -almost everywhere. Thus we can assume that $f(x) \ge 0$ for all x (Why?). Since

$$\left|\int_{E}f_{n}\,d\mu-\int_{E}f\,d\mu\right|\leq\int_{E}\left|f_{n}-f\right|\,d\mu=\|f_{n}-f\|_{1}\rightarrow0,$$

we have $\lim_{n} \int_{E} f_{n}(x) d\mu(x) = \int_{E} f(x) d\mu(x)$. Now by requation (1) it follows that

$$\nu(E) = \lim_{n \to \infty} \int_E f_n(x) \, d\mu(x) = \int_E f(x) \, d\mu(x).$$

This completes the existence part of the proof when μ and ν are finite measures. The uniqueness statement is left for homework.

- Definitely time for a break.
- Questions?
- Start recording again.

Proof of the General Case.

Since μ and ν are both σ -finite, we can suppose that $X = \bigcup_{n=1}^{\infty} X_n$ with $\mu(X_n) < \infty$ and $\nu(X_n) < \infty$ and $X_n \subset X_{n+1}$. Applying the previous argument to $(X_n, \mathcal{M}(X_n))$ we have a function $h_n : X_n \to [0, \infty)$ such that

$$u(E) = \int_E h_n(x) \, d\mu(x) \quad \text{for all } E \in \mathcal{M}(X_n).$$

We can extend h_n to all of X be setting $h_n(x) = 0$ if $x \notin X_n$. If $n \le m$ and $E \subset X_n$ is measurable, then

$$\int_E h_n(x) d\mu(x) = \nu(E) = \int_E h_m(x) d\mu(x).$$

Since $E \subset X_n$ is arbitrary, $h_n(x) = h_m(x)$ for μ -almost all $x \in X_n$.

Let

$$f_n(x) = \sup\{ h_1(x), \ldots, h_n(x) \}$$

Then $f_n \sim h_n$. Furthermore, $f_n \nearrow f$ for a measurable function $f : X \to [0, \infty]$. If $E \in \mathcal{M}$, then

$$\nu(E) = \lim_{n \to \infty} \nu(E \cap X_n) = \lim_n \int_E h_n(x) \, d\mu(x)$$
$$= \lim_n \int_E f_n(x) \, d\mu(x)$$
$$\stackrel{\text{MCT}}{=} \int_E f(x) \, d\mu(x).$$

Let
$$A = \{ x : f(x) = \infty \}$$
. Since

$$\int_E f(x) \, d\mu(x) = \int_E h_n(x) \, d\mu(x) \quad ext{for all } E \in \mathcal{M}(X_n),$$

it follows that $f(x) = h_n(x)$ for μ -almost all $x \in X_n$. Therefore $\mu(A \cap X_n) = 0$. Thus

$$\mu(A) = \lim_n \mu(A \cap X_n) = 0.$$

Therefore, we can choose f so that $f(X) \subset [0, \infty)$.

Uniqueness is a homework problem.

Remark

In the preceding theorem, we call the function $f: X \to [0,\infty)$ such that

$$\nu(E) = \int_E f(x) \, d\mu(x)$$

"the" Radon-Nikodym derivative of ν with respect to μ . The notation $f = \frac{d\nu}{d\mu}$ is often employed. Thus, by our homework problem, for all $g \in \mathcal{L}^1(\nu)$, we have $g \frac{d\nu}{d\mu} \in \mathcal{L}^1(\mu)$ and

$$\int_X g \, d\nu = \int_X g \frac{d\nu}{d\mu} \, d\mu$$

which may at least explain the terminology and notation. We get away with saying "the" as $\frac{d\nu}{d\mu}$ is determined μ -almost everywhere.

- Definitely time for a break.
- Questions?
- Start recording again.

Outer Measures Again

Definition

Recall that an algebra of subsets of a set X is a collection $\mathcal{A} \subset \mathcal{P}(X)$ containing X which is closed under complements and finite unions. A function $\rho : \mathcal{A} \to [0, \infty]$ is called a pre-measure on \mathcal{A} if $\rho(\emptyset) = 0$ and whenever $\{ E_n \}_{n=1}^{\infty} \subset \mathcal{A}$ is a pairwise disjoint family such that $\bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$, then

$$\rho\Big(\bigcup_{n=1}^{\infty} E_n\Big) = \sum_{n=1}^{\infty} \rho(E_n).$$

Remark

If the requirement that a pre-measure be countably additive on the algebra A seems a high bar, we can be comforted by the observation that algebras are much more tame creatures that σ -algebras. So unlike the case for measures, we will be able to build interesting pre-measures—well, at least one anyway.

Proposition

Let \mathcal{A} be an algebra of sets in X and $\rho : \mathcal{A} \to [0, \infty]$ a pre-measure on \mathcal{A} .

• The map $\rho^* : \mathcal{P}(X) \to [0,\infty]$ given by

$$\rho^*(E) = \inf \left\{ \sum_{k=1}^{\infty} \rho(A_k) : each \ A_k \in \mathcal{A} \ and \ E \subset \bigcup_k A_k \right\}$$

is an outer measure on X.

2
$$ho^*(A)=
ho(A)$$
 for all $A\in\mathcal{A}$.

3 Every
$${\sf A}\in {\cal A}$$
 is ho^* -measurable.

Proof.

We will leave this as a homework exercise.

Theorem

Suppose that ρ is a pre-measure on an algebra \mathcal{A} of sets in X. Then there is a measure μ on the σ -algebra $\mathcal{M} := \mathcal{M}(\mathcal{A})$ generated by \mathcal{A} such that $\mu(E) = \rho^*(E)$ for all $E \in \mathcal{M}$. In particular, $\mu(A) = \rho(A)$ for all $A \in \mathcal{A}$. If ν is any other measure on \mathcal{M} extending ρ on \mathcal{A} , then $\nu(E) \leq \mu(E)$ for all $E \in \mathcal{M}$ with equality if $\mu(E) < \infty$. If ρ is σ -finite, then μ is the unique extension of ρ to \mathcal{M} .

Proof.

We already know that ρ^* restricts to a measure on the ρ^* -measurable sets \mathcal{M}^* . Since you will prove that $\mathcal{A} \subset \mathcal{M}^*$, we have $\mathcal{M} := \mathcal{M}(\mathcal{A}) \subset \mathcal{M}^*$. So we just let $\mu = \rho^*|_{\mathcal{M}}$. This gives us an extension μ as claimed.

Proof

Proof of Uniqueness.

Suppose ν is a measure on \mathcal{M} extending ρ . If $E \in \mathcal{M}$ and $E \subset \bigcup_k A_k$ with $A_k \in \mathcal{A}$, then

$$u(E) \leq \sum_{k} \nu(A_k) = \sum_{k} \rho(A_k).$$

Therefore $\nu(E) \leq \rho^*(E) = \mu(E)$. Also, if $A = \bigcup_k A_k$, then

$$\nu(A) = \lim_{n} \nu\left(\bigcup_{k=1}^{n} A_{k}\right) = \lim_{n} \mu\left(\bigcup_{k=1}^{n} A_{k}\right) = \mu(A).$$

If $\mu(E) < \infty$ and $\epsilon > 0$, then we can choose that A_k 's so that $\mu(A) \le \sum_k \mu(A_k) = \sum_k \rho(A_k) < \rho^*(E) + \epsilon = \mu(E) + \epsilon$. Hence $\mu(A \setminus E) < \epsilon$. Then

$$\mu(E) \leq \mu(A) = \nu(A) = \nu(E) + \nu(A \setminus E)$$

$$\leq \nu(E) + \mu(A \setminus E) \leq \nu(E) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, $\mu(E) \leq \nu(E)$. Hence $\mu(E) = \nu(E)$.

In the general σ -finite case, suppose that $X = \bigcup A_k$ with $A_k \in \mathcal{A}$ and $\rho(A_k) < \infty$. We can assume that the A_k are pairwise disjoint. Then for any $E \in \mathcal{M}$,

$$\mu(E) = \sum_{k} \mu(E \cap A_{k}) = \sum_{k} \nu(E \cap A_{k}) = \nu(E)$$

Thus $\nu = \mu$ in the σ -finite case.

• That is enough for now.