Math 73/103: Fall 2020 Lecture 21

Dana P. Williams

Dartmouth College

Friday, October 30, 2020

- We should be recording!
- Questions?
- \bullet Problems 36–45 will be due Friday, November 6 $^{\rm th}$ via gradescope.
- There is no lecture Wednesday next week.
- I added some comments on the Cantor set, ternary expansions, and the Cantor-Lebesgue function on the assignment page. That material is purely for fun and not required. page.

Product Measures

- Let (X, M, μ) and (Y, N, ν) be measure spaces. We want to build a measure μ × ν on the Cartesian product X × Y.
- If $A \in \mathcal{M}$ and $B \in \mathcal{N}$, then we call $A \times B$ a measurable rectangle.
- Naturally, we want $\mu \times \nu(A \times B) = \mu(A)\nu(B)$.
- We let *R* = { A × B : A ∈ M and B ∈ N } be the set of all measurable rectangles in X × Y.
- We will define *M* ⊗ *N* be the *σ*-algebra in *X* × *Y* generated by *R*.
- \bullet Note that ${\mathcal R}$ is closed under intersection.
- If A × B ∈ R, then (A × B)^C = (A^C × Y) ∪ (X × B^C) which is a disjoint union of measurable rectangles.

Lemma

Let A be the collection of finite unions of disjoint measurable rectangles. Then A is an algebra in $X \times Y$.

Proof.

Suppose that $E, F \in \mathcal{R}$. Then as above, $F^{C} = R_{1} \cup R_{2}$ with $R_{k} \in \mathcal{R}$ and $R_{1} \cap R_{2} = \emptyset$. Then $E \setminus F = E \cap F^{C} = (E \cap R_{1}) \cup (E \cap R_{2}) \in \mathcal{A}$. Then $E \cup F = E \setminus F \cup F \in \mathcal{A}$.

Now suppose $E_1, \ldots, E_n \in \mathcal{R}$. I claim $E_1 \cup \cdots \cup E_n \in \mathcal{A}$. Since we have the case n = 2, proceed by induction. Assume $E_1 \cup \cdots \cup E_{n-1} \in \mathcal{A}$. Then $E_1 \cup \cdots \cup E_{n-1} = \bigcup_{k=1}^m F_k$ with each $F_k \in \mathcal{R}$ and $F_i \cap F_j = \emptyset$ if $i \neq k$.

Proof

Proof Continued.

Now

$$E_1\cup\cdots\cup E_n=E_n\cup\bigcup_{k=1}^m F_k\setminus E_n\in\mathcal{A}.$$

This proves the claim, and it easily follows that $\ensuremath{\mathcal{A}}$ is closed under unions.

But if
$$E = \bigcup_{k=1}^{n} R_k \in \mathcal{A}$$
, then

$$E^{C} = \bigcap_{k=1}^{n} R_{k}^{C} = \bigcap_{k=1}^{n} R_{k}^{1} \cup R_{k}^{2}$$
$$= \bigcup \{ R_{1}^{k_{1}} \cap R_{2}^{k_{2}} \cap \dots \cap R_{n}^{k_{n}} : \text{where } k_{j} \text{ equals } 1 \text{ or } 2 \}$$
$$\in \mathcal{A}.$$

Thus \mathcal{A} is an algebra as claimed.

Lemma

Suppose that $E = A \times B \in \mathcal{R}$ and that

$$\mathsf{E} = \bigcup_{k=1}^{\infty} \mathsf{A}_k \times \mathsf{B}_k$$

where $A_k \times B_k \in \mathcal{R}$ are pairwise disjoint. Then

$$\mu(A)\nu(B) = \sum_{k=1}^{\infty} \mu(A_k)\mu(B_k).$$

Proof

Proof.

If $(x, y) \in X \times Y$, then

$$\mathbb{1}_A(x)\mathbb{1}_B(y) = \mathbb{1}_{A\times B}(x,y) = \sum_{k=1}^\infty \mathbb{1}_{A_k\times B_k}(x,y) = \sum_{k=1}^\infty \mathbb{1}_{A_k}(x)\mathbb{1}_{B_k}(y).$$

Now hold y fixed and integrate w.r.t. x:

$$\mu(A)\mathbb{1}_B(y) = \sum_{k=1}^{\infty} \mu(A_k)\mathbb{1}_{B_k}(y).$$

Now integrate w.r.t. y:

$$\mu(A)\nu(B) = \sum_{k=1}^{\infty} \mu(A_k)\nu(B_k). \quad \Box$$

Our Pre-Measure

Proposition

There is a unique pre-measure π on A such that $\pi(A \times B) = \mu(A)\nu(B)$ for all $A \times B \in \mathcal{R}$.

Proof.

Suppose $\{A_i \times B_i\}_{i=1}^n$ and $\{C_j \times D_j\}_{i=1}^m$ are elements of A such that

$$\bigcup_i A_i \times B_i = \bigcup_j C_j \times D_j.$$

Then

$$A_i imes B_i = \bigcup_{j=1}^m A_i \cap C_j imes B_i \cap D_j$$

 $C_j imes D_j = \bigcup_{i=1}^n A_i \cap C_j imes B_i \cap D_j$

are both disjoint unions.

Now we an use our lemma to conclude that

$$\sum_{i=1}^{n} \mu(A_i)\nu(B_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} \mu(A_i \cap C_j)\nu(B_i \cap D_j) = \sum_{j=1}^{m} \mu(C_j)\nu(D_j).$$

Therefore we get a well-defined function $\pi:\mathcal{A}\rightarrow [0,\infty]$ such that

$$\pi\Big(\bigcup_{k=1}^n A_k \times B_k\Big) = \sum_{k=1}^n \mu(A_k)\nu(B_k).$$

Proof

Proof Continued.

Now suppose that $E = \bigcup_{j=1}^n C_j imes D_j \in \mathcal{A}$ and that

$$E = \bigcup_{k=1}^{\infty} A_k \times B_k$$

is the pairwise disjoint union of measurable rectangles. Then we can use our lemma to see that

$$\pi(E) = \sum_{j=1}^{n} \mu(C_j)\nu(D_j) = \sum_{j=1}^{n} \sum_{k=1}^{\infty} \mu(C_j \cap A_k)\nu(D_j \cap B_k)$$
$$= \sum_{k=1}^{\infty} \mu(A_k)\nu(B_k)$$
$$= \sum_{k=1}^{\infty} \pi(A_k \times B_k).$$

It is not hard to use this to show that π is a pre-measure on \mathcal{A} : if E is the disjoint union $\bigcup_{k=1}^{\infty} E_k$ with $E_k = \bigcup_{i=1}^{n_k} R_i^k \in \mathcal{A}$, then

$$E = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{n_k} R_j^k$$

is a countable pairwise disjoint union of rectangles. Thus

$$\pi(E) = \sum_{k=1}^{\infty} \sum_{j=1}^{n_k} \pi(R_j^k) = \sum_{k=1}^{\infty} \pi(E_k).$$

Uniqueness is straightforward.

- Definitely time for a break.
- Questions?
- Start recording again.

Definition

If (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are measure spaces, then the product measure $\nu \times \nu$ or simply the product of μ and ν is the measure on $(X \times Y, \mathcal{M} \otimes \mathcal{N})$ coming from the pre-measure π defined above.

Remark (Uniqueness)

If μ and ν are σ -finite, then so is the pre-measure π . Then $\mu \times \nu$ is also σ -finite. Hence $\mu \times \nu$ is the unique measure on $\mathcal{M} \otimes \mathcal{N}$ such that

$$\mu imes
u(\mathsf{A} imes \mathsf{B}) = \mu(\mathsf{A})
u(\mathsf{B}) \quad \textit{for all } \mathsf{A} imes \mathsf{B} \in \mathcal{R}.$$

Definition

If
$$E \subset X \times Y$$
 and $(x, y) \in X \times Y$. Then

$$E_x = \{ y \in Y : (x, y) \in E \}$$
 and $E^y = \{ x \in X : (x, y) \in E \}.$

If $f: X \times Y \to Z$ is a function then $f_x: Y \to Z$ is given by $f_x(y) = f(x, y)$ and $f^y: X \to Z$ is given by $f^y(x) = f(x, y)$.

Example
$(\mathbb{1}_{E})_{x} = \mathbb{1}_{E_{x}}$
$\left(\mathbb{1}_{E}\right)^{y}=\mathbb{1}_{E^{y}}$

Proposition

Suppose that $E \in \mathcal{M} \otimes \mathcal{N}$. Then for all $(x, y) \in X \times Y$, $E_x \in \mathcal{N}$ and $E^y \in \mathcal{M}$. If $f : X \times Y \to \mathbf{C}$ is $\mathcal{M} \otimes \mathcal{N}$ -measurable, then $f_x : Y \to \mathbf{C}$ is \mathcal{N} -measurable and $f^y : X \to \mathbf{C}$ is \mathcal{M} -measurable.

Proof.

Let $\mathcal{P} = \{ E \subset X \times Y : E_x \in \mathcal{N} \text{ and } E^y \in \mathcal{M} \}$. If $A \times B \in \mathcal{R}$, then

$$(A \times B)_x = \begin{cases} B & \text{if } x \in A \\ \emptyset & \text{if } x \notin A \end{cases} \text{ and } (A \times B)^y = \begin{cases} A & \text{if } y \in B \\ \emptyset & \text{if } y \notin B. \end{cases}$$

Therefore $\mathcal{R} \subset \mathcal{P}$. Since it is not hard to check that \mathcal{P} is a σ -algebra, we have $\mathcal{M} \otimes \mathcal{N} \subset \mathcal{P}$. This proves the first assertion.

For the second assertion, convince yourself that

$$(f_x)^{-1}(V) = (f^{-1}(V))_x$$
 and $(f^y)^{-1}(V) = (f^{-1}(V))^y$

Therefore the second assertion follows from the second.

- Definitely time for a break.
- Questions?
- Start recording again.

Monotone Classes

Definition

A subset $\mathscr{C} \subset \mathcal{P}(X)$ is called a monotone class if is closed under increasing countable unions and decreasing countable intersections.

Example

Every σ -algebra is a monotone class. The collection \mathscr{C} of intervals in **R** (including the empty set and points) is a monotone class that is not a σ -algebra.

Lemma

Given any subset $\mathcal{E} \subset \mathcal{P}(X)$, there is a smallest monotone class $\mathscr{C}(\mathcal{E})$ containing \mathcal{E} . We call $\mathscr{C}(\mathcal{E})$ the monotone class generated by \mathcal{E} .

Proof.

The intersection of monotone classes is a monotone class.

Theorem (The Monotone Class Lemma)

Suppose that A is an algebra of sets in X. Then the monotone class $\mathscr{C}(A)$ generated by A coincides with the σ -algebra $\mathcal{M}(A)$ generated by A. In particular, $\mathscr{C}(A)$ is a σ -algebra.

Proof.

Since $\mathcal{M}(\mathcal{A})$ is a monotone class containing $\mathcal{A}, \ \mathscr{C}(\mathcal{A}) \subset \mathcal{M}(\mathcal{A})$. If $E \in \mathscr{C}(\mathcal{A})$, let

$$\mathcal{D}(E) = \{ F \in \mathscr{C}(\mathcal{A}) : E \setminus F, F \setminus E, \text{ and } F \cap E \text{ are all in } \mathscr{C}(\mathcal{A}) \}$$

Check that

$$0 \emptyset, X \in \mathcal{D}(E),$$

2
$$F \in \mathcal{D}(E)$$
 implies $E \in \mathcal{D}(F)$, and

3 $\mathcal{D}(E)$ is a monotone class.

Since \mathcal{A} is an algebra, $\mathcal{A} \subset \mathcal{D}(E)$ for all $E \in \mathcal{A}$. Since $\mathcal{D}(E)$ is a monotone class, $\mathscr{C}(\mathcal{A}) \subset \mathcal{D}(E)$ for all $E \in \mathcal{A}$. Thus $\mathscr{C}(\mathcal{A}) = \mathcal{D}(E)$ for all $E \in \mathcal{A}$.

Therefore $F \in \mathcal{D}(E)$ whenever $E \in \mathcal{A}$ and $F \in \mathscr{C}(\mathcal{A})$. Then using (2) above,

 $E \in \mathcal{D}(F)$ for all $F \in \mathscr{C}(\mathcal{A})$ and $E \in \mathcal{A}$. Then since $\mathcal{D}(F)$ is a monotone class,

 $\mathscr{C}(\mathcal{A}) \subset \mathcal{D}(F)$ for all $F \in \mathscr{C}(\mathcal{A})$. Thus $\mathcal{D}(F) = \mathscr{C}(\mathcal{A})$ for all $F \in \mathscr{C}(\mathcal{A})$.

Therefore if $E, F \in \mathscr{C}(\mathcal{A})$, then $E \cap F \in \mathscr{C}(\mathcal{A})$ and $E \setminus F \in \mathscr{C}(\mathcal{A})$. Since $X, \emptyset \in \mathscr{C}(\mathcal{A})$, it follows that $\mathscr{C}(\mathcal{A})$ is an algebra. Now if $\{E_k\}_{k=1}^{\infty} \subset \mathscr{C}(\mathcal{A})$, then for each $n, \bigcup_{k=1}^{n} E_k \in \mathscr{C}(\mathcal{A})$. But then $\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} E_k = \bigcup_{k=1}^{\infty} E_k \in \mathscr{C}(\mathcal{A})$. Therefore $\mathscr{C}(\mathcal{A})$ is a σ -algebra containing \mathcal{A} . Then $\mathcal{M}(\mathcal{A}) \subset \mathscr{C}(\mathcal{A})$. • That is enough for now.