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Getting Started

We should be recording!

Questions?

Problems 36–45 will be due Friday, November 6th via
gradescope.

There is no lecture Wednesday next week.

I added some comments on the Cantor set, ternary expansions,
and the Cantor-Lebesgue function on the assignment page.
That material is purely for fun and not required. page.
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Product Measures

Let (X ,M, µ) and (Y ,N , ν) be measure spaces. We want to
build a measure µ× ν on the Cartesian product X × Y .

If A ∈M and B ∈ N , then we call A× B a measurable
rectangle.

Naturally, we want µ× ν(A× B) = µ(A)ν(B).

We let R = {A× B : A ∈M and B ∈ N } be the set of all
measurable rectangles in X × Y .

We will define M⊗N be the σ-algebra in X × Y generated
by R.

Note that R is closed under intersection.

If A× B ∈ R, then (A× B)C = (AC × Y ) ∪ (X × BC ) which
is a disjoint union of measurable rectangles.
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The Algebra of Measurable Rectangles

Lemma

Let A be the collection of finite unions of disjoint measurable
rectangles. Then A is an algebra in X × Y .

Proof.

Suppose that E ,F ∈ R. Then as above, FC = R1 ∪ R2 with
Rk ∈ R and R1 ∩ R2 = ∅. Then
E \ F = E ∩ FC = (E ∩ R1) ∪ (E ∩ R2) ∈ A. Then
E ∪ F = E \ F ∪ F ∈ A.

Now suppose E1, . . . ,En ∈ R. I claim E1 ∪ · · · ∪ En ∈ A. Since we
have the case n = 2, proceed by induction. Assume
E1 ∪ · · · ∪ En−1 ∈ A. Then E1 ∪ · · · ∪ En−1 =

⋃m
k=1 Fk with each

Fk ∈ R and Fi ∩ Fj = ∅ if i 6= k.
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Proof

Proof Continued.

Now

E1 ∪ · · · ∪ En = En ∪
m⋃

k=1

Fk \ En ∈ A.

This proves the claim, and it easily follows that A is closed under
unions.

But if E =
⋃n

k=1 Rk ∈ A, then

EC =
n⋂

k=1

RC
k =

n⋂
k=1

R1
k ∪ R2

k

=
⋃
{Rk1

1 ∩ Rk2
2 ∩ · · · ∩ Rkn

n : where kj equals 1 or 2 }

∈ A.

Thus A is an algebra as claimed.

Dana P. Williams Math 73/103: Fall 2020 Lecture 21



Getting to a Pre-Measure

Lemma

Suppose that E = A× B ∈ R and that

E =
∞⋃
k=1

Ak × Bk

where Ak × Bk ∈ R are pairwise disjoint. Then

µ(A)ν(B) =
∞∑
k=1

µ(Ak)µ(Bk).
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Proof

Proof.

If (x , y) ∈ X × Y , then

1A(x)1B(y) = 1A×B(x , y) =
∞∑
k=1

1Ak×Bk
(x , y) =

∞∑
k=1

1Ak
(x)1Bk

(y).

Now hold y fixed and integrate w.r.t. x :

µ(A)1B(y) =
∞∑
k=1

µ(Ak)1Bk
(y).

Now integrate w.r.t. y :

µ(A)ν(B) =
∞∑
k=1

µ(Ak)ν(Bk).
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Our Pre-Measure

Proposition

There is a unique pre-measure π on A such that π(A× B) = µ(A)ν(B)
for all A× B ∈ R.

Proof.

Suppose {Ai × Bi }ni=1 and {Cj × Dj }mj=1 are elements of A such that⋃
i

Ai × Bi =
⋃
j

Cj × Dj .

Then

Ai × Bi =
m⋃
j=1

Ai ∩ Cj × Bi ∩ Dj

Cj × Dj =
n⋃

i=1

Ai ∩ Cj × Bi ∩ Dj

are both disjoint unions.
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Proof

Proof Continued.

Now we an use our lemma to conclude that

n∑
i=1

µ(Ai )ν(Bi ) =
n∑

i=1

m∑
j=1

µ(Ai ∩ Cj)ν(Bi ∩ Dj) =
m∑
j=1

µ(Cj)ν(Dj).

Therefore we get a well-defined function π : A → [0,∞] such that

π
( n⋃
k=1

Ak × Bk

)
=

n∑
k=1

µ(Ak)ν(Bk).
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Proof

Proof Continued.

Now suppose that E =
⋃n

j=1 Cj × Dj ∈ A and that

E =
∞⋃
k=1

Ak × Bk

is the pairwise disjoint union of measurable rectangles. Then we
can use our lemma to see that

π(E ) =
n∑

j=1

µ(Cj)ν(Dj) =
n∑

j=1

∞∑
k=1

µ(Cj ∩ Ak)ν(Dj ∩ Bk)

=
∞∑
k=1

µ(Ak)ν(Bk)

=
∞∑
k=1

π(Ak × Bk).
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Proof

Proof Continued.

It is not hard to use this to show that π is a pre-measure on A: if
E is the disjoint union

⋃∞
k=1 Ek with Ek =

⋃nk
j=1 R

k
j ∈ A, then

E =
∞⋃
k=1

nk⋃
j=1

Rk
j

is a countable pairwise disjoint union of rectangles. Thus

π(E ) =
∞∑
k=1

nk∑
j=1

π(Rk
j ) =

∞∑
k=1

π(Ek).

Uniqueness is straightforward.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Payoff

Definition

If (X ,M, µ) and (Y ,N , ν) are measure spaces, then the product
measure ν × ν or simply the product of µ and ν is the measure on
(X × Y ,M⊗N ) coming from the pre-measure π defined above.

Remark (Uniqueness)

If µ and ν are σ-finite, then so is the pre-measure π. Then µ× ν is
also σ-finite. Hence µ× ν is the unique measure on M⊗N such
that

µ× ν(A× B) = µ(A)ν(B) for all A× B ∈ R.
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Sections

Definition

If E ⊂ X × Y and (x , y) ∈ X × Y . Then

Ex = { y ∈ Y : (x , y) ∈ E } and E y = { x ∈ X : (x , y) ∈ E }.

If f : X × Y → Z is a function then fx : Y → Z is given by
fx(y) = f (x , y) and f y : X → Z is given by f y (x) = f (x , y).

y

x

E

E y

Ex

Example

(
1E

)
x

= 1Ex(
1E

)y
= 1E y
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Measurable Sections

Proposition

Suppose that E ∈M⊗N . Then for all (x , y) ∈ X × Y , Ex ∈ N
and E y ∈M. If f : X × Y → C is M⊗N -measurable, then
fx : Y → C is N -measurable and f y : X → C is M-measurable.

Proof.

Let P = {E ⊂ X × Y : Ex ∈ N and E y ∈M}. If A× B ∈ R,
then

(A× B)x =

{
B if x ∈ A

∅ if x /∈ A
and (A× B)y =

{
A if y ∈ B

∅ if y /∈ B.

Therefore R ⊂ P. Since it is not hard to check that P is a
σ-algebra, we have M⊗N ⊂ P. This proves the first assertion.
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Proof

Proof Continued.

For the second assertion, convince yourself that

(fx)−1(V ) =
(
f −1(V )

)
x

and (f y )−1(V ) =
(
f −1(V )

)y
.

Therefore the second assertion follows from the second.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Monotone Classes

Definition

A subset C ⊂ P(X ) is called a monotone class if is closed under
increasing countable unions and decreasing countable intersections.

Example

Every σ-algebra is a monotone class. The collection C of intervals
in R (including the empty set and points) is a monotone class that
is not a σ-algebra.

Lemma

Given any subset E ⊂ P(X ), there is a smallest monotone class
C (E) containing E . We call C (E) the monotone class generated
by E .

Proof.

The intersection of monotone classes is a monotone class.
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The Monotone Class Lemma

Theorem (The Monotone Class Lemma)

Suppose that A is an algebra of sets in X . Then the monotone
class C (A) generated by A coincides with the σ-algebra M(A)
generated by A. In particular, C (A) is a σ-algebra.

Proof.

Since M(A) is a monotone class containing A, C (A) ⊂M(A). If
E ∈ C (A), let

D(E ) = {F ∈ C (A) : E \ F , F \ E , and F ∩ E are all in C (A) }

Check that

1 ∅,X ∈ D(E ),

2 F ∈ D(E ) implies E ∈ D(F ), and

3 D(E ) is a monotone class.
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Proof

Proof Continued.

Since A is an algebra, A ⊂ D(E ) for all E ∈ A. Since D(E ) is a
monotone class, C (A) ⊂ D(E ) for all E ∈ A. Thus C (A) = D(E )
for all E ∈ A.

Therefore F ∈ D(E ) whenever E ∈ A and F ∈ C (A). Then using
(2) above,

E ∈ D(F ) for all F ∈ C (A) and E ∈ A. Then since D(F ) is a
monotone class,

C (A) ⊂ D(F ) for all F ∈ C (A). Thus D(F ) = C (A) for all
F ∈ C (A).

Therefore if E ,F ∈ C (A), then E ∩ F ∈ C (A) and E \ F ∈ C (A).
Since X , ∅ ∈ C (A), it follows that C (A) is an algebra. Now if
{Ek }∞k=1 ⊂ C (A), then for each n,

⋃n
k=1 Ek ∈ C (A). But then⋃∞

n=1

⋃n
k=1 Ek =

⋃∞
k=1 Ek ∈ C (A). Therefore C (A) is a σ-algebra

containing A. Then M(A) ⊂ C (A).
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That’s Enough for Today

That is enough for now.
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