Math 73/103: Fall 2020 Lecture 21

Dana P. Williams
Dartmouth College

Friday, October 30, 2020

Getting Started

- We should be recording!
- Questions?
- Problems 36-45 will be due Friday, November $6^{\text {th }}$ via gradescope.
- There is no lecture Wednesday next week.
- I added some comments on the Cantor set, ternary expansions, and the Cantor-Lebesgue function on the assignment page. That material is purely for fun and not required. page.
- Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces. We want to build a measure $\mu \times \nu$ on the Cartesian product $X \times Y$.
- If $A \in \mathcal{M}$ and $B \in \mathcal{N}$, then we call $A \times B$ a measurable rectangle.
- Naturally, we want $\mu \times \nu(A \times B)=\mu(A) \nu(B)$.
- We let $\mathcal{R}=\{A \times B: A \in \mathcal{M}$ and $B \in \mathcal{N}\}$ be the set of all measurable rectangles in $X \times Y$.
- We will define $\mathcal{M} \otimes \mathcal{N}$ be the σ-algebra in $X \times Y$ generated by \mathcal{R}.
- Note that \mathcal{R} is closed under intersection.
- If $A \times B \in \mathcal{R}$, then $(A \times B)^{C}=\left(A^{C} \times Y\right) \cup\left(X \times B^{C}\right)$ which is a disjoint union of measurable rectangles.

The Algebra of Measurable Rectangles

Lemma

Let \mathcal{A} be the collection of finite unions of disjoint measurable rectangles. Then \mathcal{A} is an algebra in $X \times Y$.

Proof.

Suppose that $E, F \in \mathcal{R}$. Then as above, $F^{C}=R_{1} \cup R_{2}$ with $R_{k} \in \mathcal{R}$ and $R_{1} \cap R_{2}=\emptyset$. Then
$E \backslash F=E \cap F^{C}=\left(E \cap R_{1}\right) \cup\left(E \cap R_{2}\right) \in \mathcal{A}$. Then
$E \cup F=E \backslash F \cup F \in \mathcal{A}$.
Now suppose $E_{1}, \ldots, E_{n} \in \mathcal{R}$. I claim $E_{1} \cup \cdots \cup E_{n} \in \mathcal{A}$. Since we have the case $n=2$, proceed by induction. Assume $E_{1} \cup \cdots \cup E_{n-1} \in \mathcal{A}$. Then $E_{1} \cup \cdots \cup E_{n-1}=\bigcup_{k=1}^{m} F_{k}$ with each $F_{k} \in \mathcal{R}$ and $F_{i} \cap F_{j}=\emptyset$ if $i \neq k$.

Proof

Proof Continued.

Now

$$
E_{1} \cup \cdots \cup E_{n}=E_{n} \cup \bigcup_{k=1}^{m} F_{k} \backslash E_{n} \in \mathcal{A} .
$$

This proves the claim, and it easily follows that \mathcal{A} is closed under unions.

But if $E=\bigcup_{k=1}^{n} R_{k} \in \mathcal{A}$, then

$$
\begin{aligned}
E^{C} & =\bigcap_{k=1}^{n} R_{k}^{C}=\bigcap_{k=1}^{n} R_{k}^{1} \cup R_{k}^{2} \\
& =\bigcup^{\prime}\left\{R_{1}^{k_{1}} \cap R_{2}^{k_{2}} \cap \cdots \cap R_{n}^{k_{n}}: \text { where } k_{j} \text { equals } 1 \text { or } 2\right\} \\
& \in \mathcal{A} .
\end{aligned}
$$

Thus \mathcal{A} is an algebra as claimed.

Getting to a Pre-Measure

Lemma

Suppose that $E=A \times B \in \mathcal{R}$ and that

$$
E=\bigcup_{k=1}^{\infty} A_{k} \times B_{k}
$$

where $A_{k} \times B_{k} \in \mathcal{R}$ are pairwise disjoint. Then

$$
\mu(A) \nu(B)=\sum_{k=1}^{\infty} \mu\left(A_{k}\right) \mu\left(B_{k}\right)
$$

Proof

Proof.

If $(x, y) \in X \times Y$, then

$$
\mathbb{1}_{A}(x) \mathbb{1}_{B}(y)=\mathbb{1}_{A \times B}(x, y)=\sum_{k=1}^{\infty} \mathbb{1}_{A_{k} \times B_{k}}(x, y)=\sum_{k=1}^{\infty} \mathbb{1}_{A_{k}}(x) \mathbb{1}_{B_{k}}(y)
$$

Now hold y fixed and integrate w.r.t. x :

$$
\mu(A) \mathbb{1}_{B}(y)=\sum_{k=1}^{\infty} \mu\left(A_{k}\right) \mathbb{1}_{B_{k}}(y)
$$

Now integrate w.r.t. y :

$$
\mu(A) \nu(B)=\sum_{k=1}^{\infty} \mu\left(A_{k}\right) \nu\left(B_{k}\right)
$$

Our Pre-Measure

Proposition

There is a unique pre-measure π on \mathcal{A} such that $\pi(A \times B)=\mu(A) \nu(B)$ for all $A \times B \in \mathcal{R}$.

Proof.

Suppose $\left\{A_{i} \times B_{i}\right\}_{i=1}^{n}$ and $\left\{C_{j} \times D_{j}\right\}_{j=1}^{m}$ are elements of \mathcal{A} such that

$$
\bigcup_{i} A_{i} \times B_{i}=\bigcup_{j} C_{j} \times D_{j}
$$

Then

$$
\begin{aligned}
& A_{i} \times B_{i}=\bigcup_{j=1}^{m} A_{i} \cap C_{j} \times B_{i} \cap D_{j} \\
& C_{j} \times D_{j}=\bigcup_{i=1}^{n} A_{i} \cap C_{j} \times B_{i} \cap D_{j}
\end{aligned}
$$

are both disjoint unions.

Proof

Proof Continued.

Now we an use our lemma to conclude that

$$
\sum_{i=1}^{n} \mu\left(A_{i}\right) \nu\left(B_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \mu\left(A_{i} \cap C_{j}\right) \nu\left(B_{i} \cap D_{j}\right)=\sum_{j=1}^{m} \mu\left(C_{j}\right) \nu\left(D_{j}\right) .
$$

Therefore we get a well-defined function $\pi: \mathcal{A} \rightarrow[0, \infty]$ such that

$$
\pi\left(\bigcup_{k=1}^{n} A_{k} \times B_{k}\right)=\sum_{k=1}^{n} \mu\left(A_{k}\right) \nu\left(B_{k}\right)
$$

Proof

Proof Continued.

Now suppose that $E=\bigcup_{j=1}^{n} C_{j} \times D_{j} \in \mathcal{A}$ and that

$$
E=\bigcup_{k=1}^{\infty} A_{k} \times B_{k}
$$

is the pairwise disjoint union of measurable rectangles. Then we can use our lemma to see that

$$
\begin{aligned}
\pi(E) & =\sum_{j=1}^{n} \mu\left(C_{j}\right) \nu\left(D_{j}\right)=\sum_{j=1}^{n} \sum_{k=1}^{\infty} \mu\left(C_{j} \cap A_{k}\right) \nu\left(D_{j} \cap B_{k}\right) \\
& =\sum_{k=1}^{\infty} \mu\left(A_{k}\right) \nu\left(B_{k}\right) \\
& =\sum_{k=1}^{\infty} \pi\left(A_{k} \times B_{k}\right) .
\end{aligned}
$$

Proof

Proof Continued.

It is not hard to use this to show that π is a pre-measure on \mathcal{A} : if E is the disjoint union $\bigcup_{k=1}^{\infty} E_{k}$ with $E_{k}=\bigcup_{j=1}^{n_{k}} R_{j}^{k} \in \mathcal{A}$, then

$$
E=\bigcup_{k=1}^{\infty} \bigcup_{j=1}^{n_{k}} R_{j}^{k}
$$

is a countable pairwise disjoint union of rectangles. Thus

$$
\pi(E)=\sum_{k=1}^{\infty} \sum_{j=1}^{n_{k}} \pi\left(R_{j}^{k}\right)=\sum_{k=1}^{\infty} \pi\left(E_{k}\right)
$$

Uniqueness is straightforward.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Payoff

Definition

If (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are measure spaces, then the product measure $\nu \times \nu$ or simply the product of μ and ν is the measure on $(X \times Y, \mathcal{M} \otimes \mathcal{N})$ coming from the pre-measure π defined above.

Remark (Uniqueness)

If μ and ν are σ-finite, then so is the pre-measure π. Then $\mu \times \nu$ is also σ-finite. Hence $\mu \times \nu$ is the unique measure on $\mathcal{M} \otimes \mathcal{N}$ such that

$$
\mu \times \nu(A \times B)=\mu(A) \nu(B) \quad \text { for all } A \times B \in \mathcal{R}
$$

Definition

If $E \subset X \times Y$ and $(x, y) \in X \times Y$. Then

$$
E_{x}=\{y \in Y:(x, y) \in E\} \quad \text { and } \quad E^{y}=\{x \in X:(x, y) \in E\} .
$$

If $f: X \times Y \rightarrow Z$ is a function then $f_{x}: Y \rightarrow Z$ is given by $f_{x}(y)=f(x, y)$ and $f^{y}: X \rightarrow Z$ is given by $f^{y}(x)=f(x, y)$.
y.

Example

$$
\begin{aligned}
& \left(\mathbb{1}_{E}\right)_{x}=\mathbb{1}_{E_{x}} \\
& \left(\mathbb{1}_{E}\right)^{y}=\mathbb{1}_{E^{y}}
\end{aligned}
$$

Measurable Sections

Proposition

Suppose that $E \in \mathcal{M} \otimes \mathcal{N}$. Then for all $(x, y) \in X \times Y, E_{x} \in \mathcal{N}$ and $E^{y} \in \mathcal{M}$. If $f: X \times Y \rightarrow \mathbf{C}$ is $\mathcal{M} \otimes \mathcal{N}$-measurable, then $f_{x}: Y \rightarrow \mathbf{C}$ is \mathcal{N}-measurable and $f^{y}: X \rightarrow \mathbf{C}$ is \mathcal{M}-measurable.

Proof.

Let $\mathcal{P}=\left\{E \subset X \times Y: E_{x} \in \mathcal{N}\right.$ and $\left.E^{y} \in \mathcal{M}\right\}$. If $A \times B \in \mathcal{R}$, then

$$
(A \times B)_{x}=\left\{\begin{array}{ll}
B & \text { if } x \in A \\
\emptyset & \text { if } x \notin A
\end{array} \quad \text { and } \quad(A \times B)^{y}= \begin{cases}A & \text { if } y \in B \\
\emptyset & \text { if } y \notin B\end{cases}\right.
$$

Therefore $\mathcal{R} \subset \mathcal{P}$. Since it is not hard to check that \mathcal{P} is a σ-algebra, we have $\mathcal{M} \otimes \mathcal{N} \subset \mathcal{P}$. This proves the first assertion.

Proof

Proof Continued.

For the second assertion, convince yourself that

$$
\left(f_{x}\right)^{-1}(V)=\left(f^{-1}(V)\right)_{x} \quad \text { and } \quad\left(f^{y}\right)^{-1}(V)=\left(f^{-1}(V)\right)^{y} .
$$

Therefore the second assertion follows from the second.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Monotone Classes

Definition

A subset $\mathscr{C} \subset \mathcal{P}(X)$ is called a monotone class if is closed under increasing countable unions and decreasing countable intersections.

Example

Every σ-algebra is a monotone class. The collection \mathscr{C} of intervals in \mathbf{R} (including the empty set and points) is a monotone class that is not a σ-algebra.

Lemma
Given any subset $\mathcal{E} \subset \mathcal{P}(X)$, there is a smallest monotone class $\mathscr{C}(\mathcal{E})$ containing \mathcal{E}. We call $\mathscr{C}(\mathcal{E})$ the monotone class generated by \mathcal{E}.

Proof.

The intersection of monotone classes is a monotone class.

The Monotone Class Lemma

Theorem (The Monotone Class Lemma)

Suppose that \mathcal{A} is an algebra of sets in X. Then the monotone class $\mathscr{C}(\mathcal{A})$ generated by \mathcal{A} coincides with the σ-algebra $\mathcal{M}(\mathcal{A})$ generated by \mathcal{A}. In particular, $\mathscr{C}(\mathcal{A})$ is a σ-algebra.

Proof.

Since $\mathcal{M}(\mathcal{A})$ is a monotone class containing $\mathcal{A}, \mathscr{C}(\mathcal{A}) \subset \mathcal{M}(\mathcal{A})$. If $E \in \mathscr{C}(\mathcal{A})$, let

$$
\mathcal{D}(E)=\{F \in \mathscr{C}(\mathcal{A}): E \backslash F, F \backslash E, \text { and } F \cap E \text { are all in } \mathscr{C}(\mathcal{A})\}
$$

Check that
(1) $\emptyset, X \in \mathcal{D}(E)$,
(2) $F \in \mathcal{D}(E)$ implies $E \in \mathcal{D}(F)$, and
(3) $\mathcal{D}(E)$ is a monotone class.

Proof

Proof Continued.

Since \mathcal{A} is an algebra, $\mathcal{A} \subset \mathcal{D}(E)$ for all $E \in \mathcal{A}$. Since $\mathcal{D}(E)$ is a monotone class, $\mathscr{C}(\mathcal{A}) \subset \mathcal{D}(E)$ for all $E \in \mathcal{A}$. Thus $\mathscr{C}(\mathcal{A})=\mathcal{D}(E)$ for all $E \in \mathcal{A}$.

Therefore $F \in \mathcal{D}(E)$ whenever $E \in \mathcal{A}$ and $F \in \mathscr{C}(\mathcal{A})$. Then using (2) above,
$E \in \mathcal{D}(F)$ for all $F \in \mathscr{C}(\mathcal{A})$ and $E \in \mathcal{A}$. Then since $\mathcal{D}(F)$ is a monotone class,
$\mathscr{C}(\mathcal{A}) \subset \mathcal{D}(F)$ for all $F \in \mathscr{C}(\mathcal{A})$. Thus $\mathcal{D}(F)=\mathscr{C}(\mathcal{A})$ for all $F \in \mathscr{C}(\mathcal{A})$.
Therefore if $E, F \in \mathscr{C}(\mathcal{A})$, then $E \cap F \in \mathscr{C}(\mathcal{A})$ and $E \backslash F \in \mathscr{C}(\mathcal{A})$. Since $X, \emptyset \in \mathscr{C}(\mathcal{A})$, it follows that $\mathscr{C}(\mathcal{A})$ is an algebra. Now if $\left\{E_{k}\right\}_{k=1}^{\infty} \subset \mathscr{C}(\mathcal{A})$, then for each $n, \bigcup_{k=1}^{n} E_{k} \in \mathscr{C}(\mathcal{A})$. But then $\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} E_{k}=\bigcup_{k=1}^{\infty} E_{k} \in \mathscr{C}(\mathcal{A})$. Therefore $\mathscr{C}(\mathcal{A})$ is a σ-algebra containing \mathcal{A}. Then $\mathcal{M}(\mathcal{A}) \subset \mathscr{C}(\mathcal{A})$.

That's Enough for Today

- That is enough for now.

