Math 73/103: Fall 2020 Lecture 22

Dana P. Williams
Dartmouth College

Monday, November 2, 2020

Getting Started

- We should be recording!
- Questions?
- Problems $36-45$ will be due Friday, November $6^{\text {th }}$ via gradescope.
- There is no lecture Wednesday.

Last Time

- Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces.
- As you will see, we will soon want to require μ and ν to be σ-finite.
- We let $\mathcal{M} \otimes \mathcal{N}$ be the σ-algebra in $X \times Y$ generated by the measurable rectangles.
- Then we get a pre-measure π on the algebra of finite unions of disjoint measurable rectangles where $\pi(A \times B)=\mu(A) \nu(B)$.
- Then the product measure $\mu \times \nu$ is the measure on $\mathcal{M} \otimes \mathcal{N}$ coming from the outer measure associated to π.
- If μ and ν are σ-finite, then $\mu \times \nu$ is the unique measure on $(X \times Y, \mathcal{M} \otimes \mathcal{N})$ such that $\mu \times \nu(A \times B)=\mu(A) \nu(B)$.

Integrals

Proposition

Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are both σ-finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$, then

$$
x \mapsto \nu\left(E_{x}\right) \quad \text { and } \quad y \mapsto \mu\left(E^{y}\right)
$$

are measurable functions from $X \rightarrow[0, \infty]$ and $Y \rightarrow[0, \infty]$, respectively. Furthermore,

$$
\mu \times \nu(E)=\int_{X} \nu\left(E_{X}\right) d \mu(x)=\int_{Y} \mu\left(E^{y}\right) d \nu(y) .
$$

Remark

Note that it is necessary to consider extended nonnegative valued functions in (\ddagger)! Furthermore, we allow the value ∞ for $\mu \times \nu(E)$.

Proof

Proof.

To start, suppose that μ and ν are both finite measures. Let \mathscr{C} be the collection of $E \in \mathcal{M} \otimes \mathcal{N}$ such that the assertions in the proposition hold. If $A \times B \in \mathcal{R}$, then

$$
\nu\left(E_{x}\right)=\nu(B) \mathbb{1}_{A}(x) \quad \text { and } \quad \mu\left(E^{y}\right)=\mu(A) \mathbb{1}_{B}(y)
$$

Clearly these are measurable functions and the integral formula holds. Therefore $\mathcal{R} \subset \mathscr{C}$. Since \mathcal{A} is the collection of finite disjoint unions from \mathcal{R}, we also have $\mathcal{A} \subset \mathscr{C}$.

By the Monotone Class Lemma, it will suffice-in the finite case-to see that \mathscr{C} is a monotone class: then $\mathscr{C} \stackrel{M C L}{=} \mathcal{M}(\mathcal{A}):=\mathcal{M} \otimes \mathcal{N}$.

Proof

Proof Continued.

Suppose $\left\{E_{n}\right\} \subset \mathscr{C}$ with $E_{n} \subset E_{n+1}$. Let $E=\bigcup_{n=1}^{\infty} E_{n}$, $f_{n}(y)=\mu\left(E_{n}^{y}\right)$, and $f(y)=\mu\left(E^{y}\right)$. By assumption each f_{n} is measurable, and $f_{n} \nearrow f$. Hence f is measurable and

$$
\begin{aligned}
\int_{Y} \mu\left(E^{y}\right) d \nu(y) & =\int_{Y} f(y) d \mu(y) \stackrel{M C T}{=} \lim _{n} \int_{Y} f_{n}(y) d \nu(y) \\
& =\lim _{n} \int_{Y} \mu\left(E_{n}^{y}\right) d \nu(y)=\lim _{n} \mu \times \nu\left(E_{n}\right) \\
& =\mu \times \nu(E) .
\end{aligned}
$$

Since a similar argument implies $\int_{X} \nu\left(E_{X}\right) d \mu(x)=\mu \times \nu(E)$, we have $E \in \mathscr{C}$.

Proof

Proof Continued.

Now we suppose that $E=\bigcap E_{n}$ with $E_{n+1} \subset E_{n}$. We let $f_{n}(y)=\mu\left(E_{n}^{y}\right)$, and $f(y)=\mu\left(E^{y}\right)$ as before. Now $f_{n} \searrow f$, and as before, f is measurable. Since $\mu \times \nu$ is finite,

$$
\int_{Y} f_{1}(y) d \mu=\int_{Y} \mu\left(E_{1}^{y}\right) d \nu(y)=\mu \times \nu\left(E_{1}\right)<\infty
$$

Hence $f_{1} \in \mathcal{L}^{1}(\mu)$. Therefore the LDCT implies that

$$
\lim _{n} \int_{Y} f_{n}(y) d \nu(y)=\int_{Y} f(y) d \nu(y)
$$

and as on the previous slide $\int_{Y} \mu\left(E^{y}\right) d \nu(y)=\mu \times \nu(E)$. Similarly, $\int_{X} \nu\left(E_{X}\right) d \mu(x)=\mu \times \nu(E)$ and $E \in \mathscr{C}$. Therefore \mathscr{C} is a monotone class containing \mathcal{A} and $\mathscr{C}=\mathcal{M} \otimes \mathcal{N}$.

This takes care of the finite case.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Proof in General.

Now we suppose $X=\bigcup X_{k}$ and $Y=\bigcup Y_{k}$ with $\mu\left(X_{k}\right)<\infty$, $\nu\left(Y_{k}\right)<\infty, X_{k} \subset X_{k+1}$, and $Y_{k+1} \subset Y_{k}$ for all k. Let

$$
\mu_{k}(E)=\mu\left(E \cap X_{k}\right) \quad \text { and } \quad \nu_{k}(F)=\nu\left(F \cap Y_{k}\right)
$$

Then μ_{k} and ν_{k} are finite measures. If $f \geq 0$, then I claim that

$$
\int_{X} f(x) d \mu_{k}(x)=\int_{X} \mathbb{1}_{X_{k}}(x) f(x) d \mu(x)
$$

To see this, notice that it is clearly true if f is a MNNSF. Now use the MCT.

Proof

Proof Continued.

We also let

$$
(\mu \times \nu)_{k}(G)=\mu \times \nu\left(G \cap\left(X_{k} \times Y_{k}\right)\right)
$$

Notice that if $G=A \times B \in \mathcal{R}$, then

$$
\begin{aligned}
(\mu \times \nu)_{k}(A \times B) & =\mu \times \nu\left(\left(A \cap X_{k}\right) \times\left(B \cap Y_{k}\right)\right. \\
& =\mu\left(A \cap X_{k}\right) \nu\left(B \cap Y_{k}\right) \\
& =\mu_{k}(A) \nu_{k}(B)
\end{aligned}
$$

Since μ and ν are finite, we get

$$
(\mu \times \nu)_{k}=\mu_{k} \times \nu_{k}
$$

by uniqueness.

Proof

Proof Continued.

Now

$$
\begin{aligned}
\mu \times \nu\left(E \cap\left(X_{k} \times Y_{k}\right)\right) & =(\mu \times \nu)_{k}(E)=\mu_{k} \times \nu_{k}(E) \\
& =\int_{X} \nu_{k}\left(E_{x}\right) d \mu_{k}(x) \\
& =\int_{X} \mathbb{1}_{X_{k}}(x) \nu\left(E_{x} \cap Y_{k}\right) d \mu(x)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mu \times \nu(E) & =\lim _{k} \mu \times \nu\left(E \cap\left(X_{k} \times Y_{k}\right)\right) \\
& =\lim _{k} \int_{X} \mathbb{1}_{X_{k}}(x) \nu\left(E_{X} \cap Y_{k}\right) d \mu(x) \\
& \stackrel{\text { MCT }}{=} \int_{X} \nu\left(E_{X}\right) d \mu(x)
\end{aligned}
$$

Since a similar argument works for the Y-integral, we are done.

Non-Negative Functions

Definition

If (X, \mathcal{M}, μ) is a measure space, we will write $L^{+}(X, \mathcal{M}, \mu)$ for collection of measurable functions $f: X \rightarrow[0, \infty]$.

Remark

We allow the value ∞ only to cope with situations were we can't avoid it. Note that if $f \in L^{+}(X, \mathcal{M}, \mu)$ is such that

$$
\int_{X} f(x) d \mu(x)<\infty
$$

then $N=\{x:|f(x)|=\infty\}$ is a null set, and $\mathbb{1}_{X \backslash N} \cdot f$ maps into $[0, \infty) \subset \mathbf{C}$ and $\mathbb{1}_{X \backslash N} \cdot f \in \mathcal{L}^{1}(X, \mathcal{M}, \mu)$. Thus there is no real harm in thinking of such a function as defining a class $[f] \in L^{1}(X, \mathcal{M}, \mu)$.

The Tonelli Theorem

Theorem (Tonelli)

Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ-finite and that $f \in L^{+}(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$.
(1) For all $(x, y) \in X \times Y, f_{x} \in L^{+}(Y)$ and $f^{y} \in L^{+}(X)$.
(2) If

$$
g(x):=\int_{Y} f(x, y) d \nu(y) \quad \text { and } \quad h(y)=\int_{X} f(x, y) d \mu(x)
$$

then $g \in L^{+}(X)$ and $h \in L^{+}(Y)$.
(3) Moreover,

$$
\begin{aligned}
\int_{X \times Y} f(x, y) d \mu \times \nu(x, y) & =\int_{X} \int_{Y} f(x, y) d \nu(y) d \mu(x) \\
& =\int_{Y} \int_{X} f(x, y) d \mu(x) d \nu(y) .
\end{aligned}
$$

Pedantry

Remark

I was devastated to learn that Winston Churchill probably never said "This is the type of arrant pedantry up with which I will not put" when accused of ending a sentence with a preposition. Nevertheless, some pedantry has its place. In item (2), I should probably have writen

$$
g(x)=\int_{y} f_{x}(y) d \mu(y) \quad \text { and } \quad h(y)=\int_{X} f^{y}(x) d \mu(x)
$$

Then item (3) is more properly written

$$
\int_{X \times Y} f(x, y) d \mu \times \nu(x, y)=\int_{X} g(x) d \mu(x)=\int_{Y} h(y) d \nu(y)
$$

But I believe the given statement is more intuitive as written. In particular, it reminds of us the good ol' days of Calculus III.

Proof

Proof.

If $f=\mathbb{1}_{E}$, then the result is just a restatement of the previous
Therefore the result holds for MNNSFs. If $f \in L^{+}(X \times Y)$, then there are MNNSFs $f_{n} \nearrow f$. Then $\left(f_{n}\right)_{x} \nearrow f_{x}$ and $\left(f_{n}\right)^{y} \nearrow f^{y}$. Thus both are measurable and item (1) holds. If $g_{n}(x)=\int_{Y} f_{n}(x, y) d \nu(y)$ and $h_{n}(y)=\int_{X} f_{n}(x, y) d \mu(x)$, then the MCT implies that $g_{n} \nearrow g$ and $h_{n} \nearrow h$. Thus item (2) is valid. Again by the MCT,

$$
\begin{aligned}
\int_{X} g(x) d \mu(x) & =\lim _{n} \int_{X} g_{n}(x) d \mu(x) \\
& =\lim _{n} \int_{X \times Y} f_{n}(x, y) d \mu \times \nu(x, y) \\
& \stackrel{\text { MCT }}{=} \int_{X \times Y} f(x, y) d \mu \times \nu(x, y)
\end{aligned}
$$

Similarly, $\int_{Y} h(y) d \nu(y)=\int_{X \times Y} f(x, y) d \mu \times \nu(x, y)$. This completes the proof.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Theorem (Fubini)

Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ-finite and that $f \in \mathcal{L}^{1}(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \otimes \nu)$.
(1) For all $(x, y) \in X \times Y$, both f_{x} and f^{y} are measurable.
(2) For μ-almost all $x, f_{x} \in \mathcal{L}^{1}(Y)$ and for ν-almost all $y, f^{y} \in \mathcal{L}^{1}(X)$. Moreover,

$$
g(x)= \begin{cases}\int_{Y} f(x, y) d \nu(y) & \text { if } f_{x} \in \mathcal{L}^{1}(Y), \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

is in $\mathcal{L}^{1}(X)$ while

$$
h(y)= \begin{cases}\int_{X} f(x, y) d \mu(x) & \text { if } f^{y} \in \mathcal{L}^{1}(X), \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

is in $\mathcal{L}^{1}(Y)$.
(3) We have

$$
\int_{X \times Y} f(x, y) d \mu \times \nu(x, y)=\int_{X} g(x) d \mu(x)=\int_{Y} h(y) d \nu(y)
$$

Proof

Proof.

Let $f=u+i v$. Then $\left\{u^{ \pm}, v^{ \pm}\right\} \in \mathcal{L}^{1}(\mu \times \nu) \cap L^{+}(\mu \times \nu)$. Since the union of four null sets is a null set, we can reduce to the case that $f \in \mathcal{L}^{1}(\mu \times \nu) \cap L^{+}(\mu \times \nu)$. Then by part (1) of Tonelli's Theorem, f_{x} and f^{y} are measurable. This proves item (1).

Also by Tonelli,

$$
\tilde{g}(x)=\int_{Y} f(x, y) d \nu(y)
$$

is measurable (into $[0, \infty]$) and

$$
\int_{X} \tilde{g}(x) d \mu(x)=\int_{X \times Y} f(x, y) d \mu \times \nu(x, y)<\infty
$$

Proof

Proof Continued.

Therefore $N=\{x: \tilde{g}(x)=\infty\}$ is μ-null, and $g=\mathbb{1}_{X \backslash N} \cdot \tilde{g}$ is measurable. Since $g=\tilde{g}$ for μ-almost all $x, g \in \mathcal{L}^{1}(X)$.
Furthermore,

$$
\int_{X} g(x) d \mu(x)=\int_{X \times Y} f(x, y) d \mu \times \nu(x, y)
$$

By symmetry, $h \in \mathcal{L}^{1}(Y)$ and

$$
\int_{Y} h(y) d \nu(y)=\int_{X \times Y} f(x, y) d \mu \times \nu(x, y)
$$

This completes the proof.

Practicing Mathematics

Remark

In practice, you may be presented with an iterated integral

$$
\int_{X} \int_{Y} f(x, y) d \nu(y) d \mu(x) .
$$

Even though the product measure is not on your radar, you want to interchange the order of integration. First, you must verify that f is $\mathcal{M} \otimes \mathcal{N}$-measurable. This can be quite hard sometimes. Then you apply Tonelli to compute

$$
\int_{X} \int_{Y}|f(x, y)| d \nu(y) d \mu(x)=\int_{X \times Y}|f(x, y)| d \mu \times \nu(x, y)
$$

to show that $f \in \mathcal{L}^{1}(\mu \times \nu)$. Then you can apply Fubini to interchange the order of integration.

Urban Legend

Remark

Every Ph.D. program tells the story of the student who was puzzled by the request to evaluate

$$
S=\int_{0}^{\infty} e^{-x^{2}} d x
$$

The story goes that after some minutes of silence one of the "kinder" examiners suggests "use Fubini".

The point of the joke is that you can't make sense of the hint unless you already know how to do the problem.
First

$$
S^{2}=\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)=\int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}-y^{2}} d x d y
$$

Now Fubini

Now by Fubini (and Tonelli),

$$
S^{2}=\iint_{Q} e^{-x^{2}-y^{2}} d A
$$

where $Q=\{(x, y) ; x, y \geq 0\}$ and $d A$ is the product measure $m \times m$ on \mathbf{R}^{2}. Then if $Q_{N}=\left\{(x, y): x, y \geq 0\right.$ and $\left.x^{2}+y^{2} \leq N\right\}$,

$$
S^{2}=\lim _{N \rightarrow \infty} \iint_{Q_{N}} e^{-x^{2}-y^{2}} d A
$$

which, but Fubini Again as well as a dose of polar coordinates, is

$$
=\lim _{N \rightarrow \infty} \int_{0}^{\frac{\pi}{2}} \int_{0}^{N} e^{-r^{2}} r d r d \theta=\lim _{N \rightarrow \infty} \frac{\pi}{4}\left(1-e^{-N^{2}}\right)=\frac{\pi}{4}
$$

Therefore $S=\frac{\sqrt{\pi}}{2}$.

That's Enough for Today

- That is enough for now.

