Math 73/103: Fall 2020 Lecture 24

Dana P. Williams

Dartmouth College

Friday, November 6, 2020

- We should be recording!
- Questions?
- Problems 36-45 are due today via gradescope.
- There is no Lecture 23.

Remark

Even if (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are complete measure spaces, it need not be the case that $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ is complete. As we shall see, working with $\mathcal{M} \otimes \mathcal{N}$ has many advantages, but there is also a natural prejudice for complete measures. So now we want to investigate the completion $(X \times Y, \mathcal{L}, \lambda)$ of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ when both μ and ν are σ -finite. Lemma (Homework Problem #47)

Let $(X \times Y, \mathcal{L}, \lambda)$ be the completion of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ where μ and ν are complete σ -finite measures.

- If E ∈ M ⊗ N and µ×ν(E) = 0, then µ(E^y) = 0 = ν(E_x) for µ-almost all x and ν-almost all y.
- If f is L-measurable and f(x, y) = 0 for λ-almost all (x, y), then there is a μ-null set M and a ν-null set M such that for all x ∉ M and y ∉ N, f_x and f^y are integrable. Furthermore

$$\int_X f^y(x) d\mu(x) = 0 = \int_Y f_x(y) d\nu(y).$$

▶ return

Theorem (Tonelli)

Let $(X \times Y, \mathcal{L}, \lambda)$ be the completion of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ where μ and ν are complete σ -finite measures. Suppose that $f \in L^+(X \times Y, \mathcal{L}, \lambda)$. Then there are null sets $M \subset X$ and $N \subset Y$ such that the following hold.

• f_x and f^y are measurable if $x \notin M$ and $y \notin N$.

■ If
$$g(x) = \int_Y f(x, y) d\nu(y)$$
 if $x \notin M$ and 0 otherwise and
 $h(y) = \int_X f(x, y) d\mu(x)$ if $y \notin N$ and 0 otherwise, then
 $g \in L^+(X)$ and $h \in L^+(Y)$. Furthermore

$$\int_{X\times Y} f \, d\lambda = \int_X g \, d\mu = \int_Y h \, d\nu.$$

Theorem (Fubini)

Let $(X \times Y, \mathcal{L}, \lambda)$ be the completion of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ where μ and ν are complete σ -finite measures. Suppose that $f \in \mathcal{L}^1(\lambda)$. Then there are null sets $M \subset X$ and $N \subset Y$ such that $f_x \in \mathcal{L}^1(\nu)$ if $x \notin M$ and $f^y \in \mathcal{L}^1(\mu)$ if $y \notin N$,

• if we define $g(x) = \int_{Y} f(x, y) d\nu(y)$ when $x \notin M$ and 0 otherwise, and similarly for h, then $g \in \mathcal{L}^{1}(\mu)$ and $h \in \mathcal{L}^{1}(\nu)$. Furthermore

6

$$\int_{X\times Y} f \, d\lambda = \int_X g \, d\mu = \int_Y h \, d\nu.$$

Proof.

Suppose that $f \in L^+(\lambda)$. Then by HW#39, there is a $h \in L^+(\mu \times \nu)$ such that $h = f \lambda$ -almost everywhere. Then f = h + (f - h) and we can apply part (2) of our HWLemma to f - h. Since $f_x = h_x + (f - h)_x$ and h_x is always measurable, f_x is measurable almost everywhere. By symmetry, so is f^y . This proves part (1). If f is also integrable, then h is integrable and h_x is integrable almost everywhere as is $(f - h)_x$ (by HW#39). Thus f_x (and by symmetry f^y) is integrable almost everywhere. Now part (4) follows by decomposing $f \in \mathcal{L}^1(\lambda)$ into a linear combination of positive functions.

Proof Continued.

If $f \in L^+(\lambda)$, then $x \mapsto g(x)$ —essentially $x \mapsto \int_Y f_x d\nu$ —is equal almost everywhere to $x \mapsto \int_Y h_x d\nu$, so g is measurable since μ is complete. By symmetry, we have established part (2). If f is also integrable, then h is integrable. Therefore $x \mapsto \int_Y h_x d\nu$ is integrable which implies g is. By symmetry, we have established part (5).

Parts (3) and (6) follow easily as the integrals all are given by their h-counterparts.

- Definitely time for a break.
- Questions?
- Start recording again.

Functional Analysis

Definition

Let (X, \mathcal{M}, μ) be a measure space and $1 \le p < \infty$. Let $\mathcal{L}^p(X, \mathcal{M}, \mu)$ be the set of measurable functions $f : X \to \mathbf{C}$ such that

$$\int_X |f(x)|^p \, d\mu(x) < \infty.$$

If $f \in \mathcal{L}^p(X, \mathcal{M}, \mu)$, then we define its *p*-norm to be

$$||f||_p = \left(\int_X |f(x)|^p \, d\mu(x)\right)^{\frac{1}{p}}.$$

We let $L^{p}(X, \mathcal{M}, \mu)$ be the set of equivalence class in $\mathcal{L}^{p}(X, \mathcal{M}, \mu)$ where $f \sim g$ if f(x) = g(x) for μ -almost all x. We let $\|[f]\|_{p} = \|f\|_{p}$.

Example

If ν is counting measure on **N**, then $\mathcal{L}^{p}(\mathbf{N}, \mathcal{P}(\mathbf{N}), \nu) = L^{p}(\mathbf{N}, \mathcal{P}(\mathbf{N}), \mu) = \ell^{p}$. In this case we know that $\|\cdot\|_{p}$ are complete norms for all $1 \leq p \leq \infty$. More generally, if ν is counting measure on any set X, then we let $\ell^{p}(X) = L^{p}(X, \mathcal{P}(X), \nu)$. Then

$$||f||_p^p = \int_X |f(x)|^p \, d\nu(x) = \sum_{x \in X} |f(x)|^p$$

where the sum is defined as in HW#30. To see this, just note that a (measurable) simple function is any function vanishing off a finite set F.

Don't Forget Infinity

Definition

If (X, \mathcal{M}, μ) is a measure space and $f: X \to \mathbf{C}$ is measurable, then

$$\|f\|_{\infty} = \inf\{ a \ge 0 : \mu(\{ x : |f(x)| > a \}) = 0 \}$$

with the understanding that $\inf \emptyset := \infty$ in this case. We call $||f||_{\infty}$ the essential supremum of f and sometimes write $||f||_{\infty} = \operatorname{ess\,sup}_{x \in X} |f(x)|$. (The notation overlap with the ordinary "sup norm" is unfortunate, but the notation is classical.)

Remark (The Infimum is Attained)

If $\|f\|_{\infty} < \infty$, then

$$\{x: |f(x)| > ||f||_{\infty}\} = \bigcup_{n=1}^{\infty} \{x: |f(x)| > ||f||_{\infty} + \frac{1}{n}\}.$$
 (*)

Thus the LHS of (*) is a null set. Moreover, if $||f||_{\infty} < \epsilon$, then there is a null set N such that $|f(x)| < \epsilon$ if $x \notin N$.

Basic L^{∞}

Definition

We let $\mathcal{L}^{\infty}(X, \mathcal{M}, \mu)$ be the collection of measurable functions $f: X \to \mathbf{C}$ such that $||f||_{\infty} < \infty$, and let $L^{\infty}(X, \mathcal{M}, \mu)$ be the set of almost everywhere equivalence class in $\mathcal{L}^{\infty}(X, \mathcal{M}, \mu)$.

Proposition

Let (X, \mathcal{M}, μ) be a measure space.

$$lacksymbol{9} \ \|\cdot\|_\infty$$
 is a norm on $L^\infty(\mu).$

2 $f_n \to f$ in $L^{\infty}(\mu)$ if and only if there is a $E \in \mathcal{M}$ such that $f_n \to f$ uniformly on $X \setminus E$ and $\mu(E) = 0$.

3
$$L^{\infty}(\mu)$$
 is a Banach space.

• Simple functions are dense in $L^{\infty}(\mu)$.

Proof.

This is a homework problem.

- Definitely time for a break.
- Questions?
- Start recording again.

Conjugate Exponents

Definition

If $1 , then <math>q = \frac{p}{p-1}$ is called the conjugate exponent to p. We also declare 1 and ∞ to be conjugate exponents of one another.

Remark

Rather than say "q is the conjugate exponent to p", we will normally just write $\frac{1}{p} + \frac{1}{q} = 1$.

Lemma (HW#1.1+)

If a, $b \in [0,\infty)$ and $0 < \lambda < 1$, then

$$a^{\lambda}b^{1-\lambda} \leq \lambda a + (1-\lambda)b$$

with equality if and only if a = b.

▶ return

Remark (Infinite Norms)

If $f : X \to \mathbf{C}$ is measurable, and $\int_X |f(x)|^p d\mu(x) = \infty$, then we will write $||f||_p = \infty$.

Theorem (Hölder's Inequality)

Suppose that $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. If $f, g: X \to \mathbf{C}$ are measurable, then

$$\|fg\|_1 \le \|f\|_p \|g\|_q.$$
 (1)

In particular, if $f \in \mathcal{L}^{p}(X)$ and $g \in \mathcal{L}^{q}(X)$, then $fg \in \mathcal{L}^{1}(X)$. If in addition, $1 , then we have equality in <math>(\ddagger)$ if and only if there are non-negative constants α and β , not both equal to 0, such that $\alpha |f(x)|^{p} = \beta |g(x)|^{q}$ for μ -almost all x.

Proof.

This is straightforward if p = 1 or $p = \infty$. (When do we get equality in this case?) So assume $1 . If <math>||f||_p = 0$ or $||g||_q = 0$, then $fg \sim 0$ and the result is clear. Hence we can assume $||f||_p > 0$ and $||g||_q > 0$.

If either $||f||_p = \infty$ or $||g||_q = \infty$, then the result is clear.

Hence we assume that $0 < ||f||_p$, $||g||_q < \infty$. Since $||\cdot||_p$ and $||\cdot||_q$ are homogeneous, the inequality in question amounts to showing

$$\left\|\frac{f}{\|f\|_p} \cdot \frac{g}{\|g\|_q}\right\|_1 \le 1.$$

Proof Continued.

Therefore we assume that $||f||_p = 1 = ||g||_q$, and it will suffice to prove that $||fg||_1 \le 1$ with equality exactly when $|f(x)|^p = |g(x)|^q$ for almost all x.

Let $a = |f(x)|^p$ and $b = |g(x)|^q$ and $\lambda = \frac{1}{p}$. Since $q(1 - \lambda) = 1$, our HW Lemma implies

$$|f(x)||g(x)| \le \frac{1}{p} |f(x)|^p + \frac{1}{q} |g(x)|^q.$$
 (†)

Then we integrate to get

$$\|fg\|_1 \leq rac{1}{p} \|f\|_p^p + rac{1}{q} \|g\|_q^q = 1.$$

But we get equality above if and only if we get equality almost everywhere in (†). But this happens at x only if $|f(x)|^p = a = b = |g(x)|^q$.

Theorem (Minkowski's Inequality)

If $1 \leq p \leq \infty$ and if $f,g \in \mathcal{L}^p(X,\mathcal{M},\mu)$, then

 $||f+g||_{p} \leq ||f||_{p} + ||g||_{p}.$

In particular, $\|\cdot\|_p$ is a norm on $L^p(X, \mathcal{M}, \mu)$.

Proof.

The result is easy if p = 1 (and we dealt with this case before), and $p = \infty$ is homework. The result is also easy if $f + g \sim 0$. Otherwise

$$|f(x) + g(x)|^{p} = |f(x) + g(x)| (|f(x) + g(x)|)^{p-1}$$

$$\leq |f(x)| (|f(x) + g(x)|)^{p-1} + |g(x)| (|f(x) + g(x)|)^{p-1}$$

Proof

Proof Continued.

Now we apply Hölder with $q = \frac{p}{p-1}$ to get

$$\begin{split} \|f+g\|_{p}^{p} &\leq \int_{X} |f| |f+g|^{p-1} \, d\mu + \int_{X} |g| |f+g|^{p-1} \, d\mu \\ &\leq \|f\|_{p} \||f+g|^{p-1} \|_{q} + \|g\|_{p} \||f+g|^{p-1} \|_{q}. \end{split}$$

But

$$|||f+g|^{p-1}||_q = \left(\int_X |f+g|^p\right)^{\frac{1}{q}} = ||f+g||_p^{\frac{p}{q}}.$$

Thus

$$||f+g||_p^{p-\frac{p}{q}} \le ||f||_p + ||g||_p$$

and $p - \frac{p}{q} = 1$.

Theorem

If (X, \mathcal{M}, μ) is a measure space, then $L^{p}(X, \mathcal{M}, \mu)$ is a Banach space for $1 \leq p \leq \infty$.

Proof.

We did the case p = 1 earlier in the course and $p = \infty$ is homework. So suppose 1 . As in the case <math>p = 1, it will suffice to see that an absolutely convergent series in convergent. So suppose $\{f_k\} \subset \mathcal{L}^p(X)$ and suppose

$$\sum_{k=1}^{\infty} \|f_k\|_p = B < \infty.$$

Let $g_n(x) = \sum_{k=1}^n |f_k(x)|$ and $g(x) = \sum_{k=1}^\infty |f_k(x)|$.

Proof Continued.

By Minkowski,

$$\|g_n\|_p\leq \sum_{k=1}^n\|f_k\|_p\leq B.$$

By the MCT,

$$\int_X g(x)^p d\mu(x) = \lim_n \int_X g_n(x)^p = \lim_n \|g_n\|_p^p \le B^p < \infty.$$

Therefore $g \in \mathcal{L}^p(X)$ and we must have $g(x) < \infty$ for almost all x. Since **C** is complete and $\sum_{k=1}^{\infty} f_k(x)$ is absolutely convergent almost everywhere,

$$f(x) = \begin{cases} \sum_{k=1}^{\infty} f_k(x) & \text{if the series converges, and} \\ 0 & \text{otherwise} \end{cases}$$

is a measurable function.

Proof

Proof Continued.

Since $|f(x)| \leq \sum_{k=1}^{\infty} |f_k(x)| = g(x)$, $f \in \mathcal{L}^p(X)$. Furthermore,

$$\left|f(x)-\sum_{k=1}^n f_k(x)\right|^p \leq 2^p g(x)^p.$$

Since $2^p g^p \in \mathcal{L}^1(X)$, the LDCT implies

$$\lim_{n\to\infty}\int_X \left|f(x)-\sum_{k=1}^n f_k(x)\right|^p d\mu(x)=0.$$

Thus

$$\|f-\sum_{k=1}^n f_k\|_p\to 0$$

as required.

• That is enough for now.