Math 73/103: Fall 2020 Lecture 24

Dana P. Williams
Dartmouth College

Friday, November 6, 2020

Getting Started

- We should be recording!
- Questions?
- Problems 36-45 are due today via gradescope.
- There is no Lecture 23.

Complete Product Measures

Remark

Even if (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are complete measure spaces, it need not be the case that $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ is complete. As we shall see, working with $\mathcal{M} \otimes \mathcal{N}$ has many advantages, but there is also a natural prejudice for complete measures. So now we want to investigate the completion $(X \times Y, \mathcal{L}, \lambda)$ of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ when both μ and ν are σ-finite.

Homework

Lemma (Homework Problem \#47)

Let $(X \times Y, \mathcal{L}, \lambda)$ be the completion of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ where μ and ν are complete σ-finite measures.
(1) If $E \in \mathcal{M} \otimes \mathcal{N}$ and $\mu \times \nu(E)=0$, then $\mu\left(E^{y}\right)=0=\nu\left(E_{x}\right)$ for μ-almost all x and ν-almost all y.
(2) If f is \mathcal{L}-measurable and $f(x, y)=0$ for λ-almost all (x, y), then there is a μ-null set M and a ν-null set M such that for all $x \notin M$ and $y \notin N, f_{x}$ and f^{y} are integrable. Furthermore

$$
\int_{X} f^{y}(x) d \mu(x)=0=\int_{Y} f_{X}(y) d \nu(y) .
$$

Tonelli for the Completion

Theorem (Tonelli)

Let $(X \times Y, \mathcal{L}, \lambda)$ be the completion of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ where μ and ν are complete σ-finite measures. Suppose that $f \in L^{+}(X \times Y, \mathcal{L}, \lambda)$. Then there are null sets $M \subset X$ and $N \subset Y$ such that the following hold.
(1) f_{x} and f^{y} are measurable if $x \notin M$ and $y \notin N$.
(2) If $g(x)=\int_{Y} f(x, y) d \nu(y)$ if $x \notin M$ and 0 otherwise and
$h(y)=\int_{X} f(x, y) d \mu(x)$ if $y \notin N$ and 0 otherwise, then
$g \in L^{+}(X)$ and $h \in L^{+}(Y)$. Furthermore
(3)

$$
\int_{X \times Y} f d \lambda=\int_{X} g d \mu=\int_{y} h d \nu
$$

Theorem (Fubini)

Let $(X \times Y, \mathcal{L}, \lambda)$ be the completion of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ where μ and ν are complete σ-finite measures. Suppose that $f \in \mathcal{L}^{1}(\lambda)$. Then there are null sets $M \subset X$ and $N \subset Y$ such that
(9) $f_{x} \in \mathcal{L}^{1}(\nu)$ if $x \notin M$ and $f^{y} \in \mathcal{L}^{1}(\mu)$ if $y \notin N$,
(3) if we define $g(x)=\int_{Y} f(x, y) d \nu(y)$ when $x \notin M$ and 0 otherwise, and similarly for h, then $g \in \mathcal{L}^{1}(\mu)$ and $h \in \mathcal{L}^{1}(\nu)$. Furthermore

6

$$
\int_{X \times Y} f d \lambda=\int_{X} g d \mu=\int_{Y} h d \nu
$$

Proof of Tonelli and Fubini

Proof.

Suppose that $f \in L^{+}(\lambda)$. Then by HW\#39, there is a $h \in L^{+}(\mu \times \nu)$ such that $h=f \lambda$-almost everywhere. Then
$f=h+(f-h)$ and we can apply part (2) of our HW Lemma to
$f-h$. Since $f_{x}=h_{x}+(f-h)_{x}$ and h_{x} is always measurable, f_{x} is measurable almost everywhere. By symmetry, so is f^{y}. This proves part (1). If f is also integrable, then h is integrable and h_{x} is integrable almost everywhere as is $(f-h)_{x}$ (by HW\#39). Thus f_{x} (and by symmetry f^{y}) is integrable almost everywhere. Now part (4) follows by decomposing $f \in \mathcal{L}^{1}(\lambda)$ into a linear combination of positive functions.

Proof

Proof Continued.

If $f \in L^{+}(\lambda)$, then $x \mapsto g(x)$-essentially $x \mapsto \int_{Y} f_{x} d \nu$-is equal almost everywhere to $x \mapsto \int_{Y} h_{X} d \nu$, so g is measurable since μ is complete. By symmetry, we have established part (2). If f is also integrable, then h is integrable. Therefore $x \mapsto \int_{Y} h_{X} d \nu$ is integrable which implies g is. By symmetry, we have established part (5).

Parts (3) and (6) follow easily as the integrals all are given by their h-counterparts.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Functional Analysis

Definition

Let (X, \mathcal{M}, μ) be a measure space and $1 \leq p<\infty$. Let $\mathcal{L}^{p}(X, \mathcal{M}, \mu)$ be the set of measurable functions $f: X \rightarrow \mathbf{C}$ such that

$$
\int_{X}|f(x)|^{p} d \mu(x)<\infty
$$

If $f \in \mathcal{L}^{p}(X, \mathcal{M}, \mu)$, then we define its p-norm to be

$$
\|f\|_{p}=\left(\int_{X}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}}
$$

We let $L^{p}(X, \mathcal{M}, \mu)$ be the set of equivalence class in $\mathcal{L}^{p}(X, \mathcal{M}, \mu)$ where $f \sim g$ if $f(x)=g(x)$ for μ-almost all x. We let $\|[f]\|_{p}=\|f\|_{p}$.

Little ℓ^{p}

Example

If ν is counting measure on \mathbf{N}, then
$\mathcal{L}^{p}(\mathbf{N}, \mathcal{P}(\mathbf{N}), \nu)=L^{p}(\mathbf{N}, \mathcal{P}(\mathbf{N}), \mu)=\ell^{p}$. In this case we know that $\|\cdot\|_{p}$ are complete norms for all $1 \leq p \leq \infty$. More generally, if ν is counting measure on any set X, then we let $\ell^{p}(X)=L^{p}(X, \mathcal{P}(X), \nu)$. Then

$$
\|f\|_{p}^{p}=\int_{X}|f(x)|^{p} d \nu(x)=\sum_{x \in X}|f(x)|^{p}
$$

where the sum is defined as in HW\#30. To see this, just note that a (measurable) simple function is any function vanishing off a finite set F.

Don't Forget Infinity

Definition

If (X, \mathcal{M}, μ) is a measure space and $f: X \rightarrow \mathbf{C}$ is measurable, then

$$
\|f\|_{\infty}=\inf \{a \geq 0: \mu(\{x:|f(x)|>a\})=0\}
$$

with the understanding that $\inf \emptyset:=\infty$ in this case. We call $\|f\|_{\infty}$ the essential supremum of f and sometimes write $\|f\|_{\infty}=\operatorname{ess}_{\sup _{x \in X}|f(x)| \text {. }}$ (The notation overlap with the ordinary "sup norm" is unfortunate, but the notation is classical.)

Remark (The Infimum is Attained)

If $\|f\|_{\infty}<\infty$, then

$$
\begin{equation*}
\left\{x:|f(x)|>\|f\|_{\infty}\right\}=\bigcup_{n=1}^{\infty}\left\{x:|f(x)|>\|f\|_{\infty}+\frac{1}{n}\right\} \tag{*}
\end{equation*}
$$

Thus the LHS of $(*)$ is a null set. Moreover, if $\|f\|_{\infty}<\epsilon$, then there is a null set N such that $|f(x)|<\epsilon$ if $x \notin N$.

Basic L^{∞}

Definition

We let $\mathcal{L}^{\infty}(X, \mathcal{M}, \mu)$ be the collection of measurable functions $f: X \rightarrow \mathbf{C}$ such that $\|f\|_{\infty}<\infty$, and let $L^{\infty}(X, \mathcal{M}, \mu)$ be the set of almost everywhere equivalence class in $\mathcal{L}^{\infty}(X, \mathcal{M}, \mu)$.

Proposition

Let (X, \mathcal{M}, μ) be a measure space.
(1) $\|\cdot\|_{\infty}$ is a norm on $L^{\infty}(\mu)$.
(2) $f_{n} \rightarrow f$ in $L^{\infty}(\mu)$ if and only if there is a $E \in \mathcal{M}$ such that $f_{n} \rightarrow f$ uniformly on $X \backslash E$ and $\mu(E)=0$.
(3) $L^{\infty}(\mu)$ is a Banach space.
(9) Simple functions are dense in $L^{\infty}(\mu)$.

Proof.

This is a homework problem.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Conjugate Exponents

Definition

If $1<p<\infty$, then $q=\frac{p}{p-1}$ is called the conjugate exponent to p. We also declare 1 and ∞ to be conjugate exponents of one another.

Remark

Rather than say " q is the conjugate exponent to p ", we will normally just write $\frac{1}{p}+\frac{1}{q}=1$.

Lemma (HW\#1.1+)
If $a, b \in[0, \infty)$ and $0<\lambda<1$, then

$$
a^{\lambda} b^{1-\lambda} \leq \lambda a+(1-\lambda) b
$$

with equality if and only if $a=b$.

Hölder's Inequality

Remark (Infinite Norms)

If $f: X \rightarrow \mathbf{C}$ is measurable, and $\int_{X}|f(x)|^{p} d \mu(x)=\infty$, then we will write $\|f\|_{p}=\infty$.

Theorem (Hölder's Inequality)

Suppose that $1 \leq p \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. If $f, g: X \rightarrow \mathbf{C}$ are measurable, then

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

In particular, if $f \in \mathcal{L}^{p}(X)$ and $g \in \mathcal{L}^{q}(X)$, then $f g \in \mathcal{L}^{1}(X)$. If in addition, $1<p<\infty$, then we have equality in (\ddagger) if and only if there are non-negative constants α and β, not both equal to 0 , such that $\alpha|f(x)|^{p}=\beta|g(x)|^{q}$ for μ-almost all x.

Proof

Proof.

This is straightforward if $p=1$ or $p=\infty$. (When do we get equality in this case?) So assume $1<p<\infty$. If $\|f\|_{p}=0$ or $\|g\|_{q}=0$, then $f g \sim 0$ and the result is clear. Hence we can assume $\|f\|_{p}>0$ and $\|g\|_{q}>0$.
If either $\|f\|_{p}=\infty$ or $\|g\|_{q}=\infty$, then the result is clear.
Hence we assume that $0<\|f\|_{p},\|g\|_{q}<\infty$. Since $\|\cdot\|_{p}$ and $\|\cdot\|_{q}$ are homogeneous, the inequality in question amounts to showing

$$
\left\|\frac{f}{\|f\|_{p}} \cdot \frac{g}{\|g\|_{q}}\right\|_{1} \leq 1
$$

Proof

Proof Continued.

Therefore we assume that $\|f\|_{p}=1=\|g\|_{q}$, and it will suffice to prove that $\|f g\|_{1} \leq 1$ with equality exactly when $|f(x)|^{p}=|g(x)|^{q}$ for almost all x.

Let $a=|f(x)|^{p}$ and $b=|g(x)|^{q}$ and $\lambda=\frac{1}{p}$. Since $q(1-\lambda)=1$, our

- HW Lemma implies

$$
|f(x)||g(x)| \leq \frac{1}{p}|f(x)|^{p}+\frac{1}{q}|g(x)|^{q} .
$$

Then we integrate to get

$$
\|f g\|_{1} \leq \frac{1}{p}\|f\|_{p}^{p}+\frac{1}{q}\|g\|_{q}^{q}=1 .
$$

But we get equality above if and only if we get equality almost everywhere in (\dagger). But this happens at x only if $|f(x)|^{p}=a=b=|g(x)|^{q}$.

Minkowski's Inequality

Theorem (Minkowski's Inequality)
If $1 \leq p \leq \infty$ and if $f, g \in \mathcal{L}^{p}(X, \mathcal{M}, \mu)$, then

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

In particular, $\|\cdot\|_{p}$ is a norm on $L^{p}(X, \mathcal{M}, \mu)$.

Proof.

The result is easy if $p=1$ (and we dealt with this case before), and $p=\infty$ is homework. The result is also easy if $f+g \sim 0$. Otherwise

$$
\begin{aligned}
& |f(x)+g(x)|^{p}=|f(x)+g(x)|(|f(x)+g(x)|)^{p-1} \\
& \quad \leq|f(x)|(|f(x)+g(x)|)^{p-1}+|g(x)|(|f(x)+g(x)|)^{p-1}
\end{aligned}
$$

Proof

Proof Continued.

Now we apply Hölder with $q=\frac{p}{p-1}$ to get

$$
\begin{aligned}
\|f+g\|_{p}^{p} & \leq \int_{X}|f||f+g|^{p-1} d \mu+\int_{X}|g||f+g|^{p-1} d \mu \\
& \leq\|f\|_{p}\left\|f+\left.g\right|^{p-1}\right\|_{q}+\|g\|_{p}\left\||f+g|^{p-1}\right\|_{q}
\end{aligned}
$$

But

$$
\left\||f+g|^{p-1}\right\|_{q}=\left(\int_{X}|f+g|^{p}\right)^{\frac{1}{q}}=\|f+g\|_{p}^{\frac{p}{q}}
$$

Thus

$$
\|f+g\|_{p}^{p-\frac{p}{q}} \leq\|f\|_{p}+\|g\|_{p}
$$

and $p-\frac{p}{q}=1$.

Banach Spaces

Theorem

If (X, \mathcal{M}, μ) is a measure space, then $L^{p}(X, \mathcal{M}, \mu)$ is a Banach space for $1 \leq p \leq \infty$.

Proof.

We did the case $p=1$ earlier in the course and $p=\infty$ is homework. So suppose $1<p<\infty$. As in the case $p=1$, it will suffice to see that an absolutely convergent series in convergent. So suppose $\left\{f_{k}\right\} \subset \mathcal{L}^{p}(X)$ and suppose

$$
\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{p}=B<\infty
$$

Let $g_{n}(x)=\sum_{k=1}^{n}\left|f_{k}(x)\right|$ and $g(x)=\sum_{k=1}^{\infty}\left|f_{k}(x)\right|$.

Proof Continued.

By Minkowski,

$$
\left\|g_{n}\right\|_{p} \leq \sum_{k=1}^{n}\left\|f_{k}\right\|_{p} \leq B
$$

By the MCT,

$$
\int_{X} g(x)^{p} d \mu(x)=\lim _{n} \int_{X} g_{n}(x)^{p}=\lim _{n}\left\|g_{n}\right\|_{p}^{p} \leq B^{p}<\infty
$$

Therefore $g \in \mathcal{L}^{p}(X)$ and we must have $g(x)<\infty$ for almost all x. Since \mathbf{C} is complete and $\sum_{k=1}^{\infty} f_{k}(x)$ is absolutely convergent almost everywhere,

$$
f(x)= \begin{cases}\sum_{k=1}^{\infty} f_{k}(x) & \text { if the series converges, and } \\ 0 & \text { otherwise }\end{cases}
$$

is a measurable function.

Proof

Proof Continued.

Since $|f(x)| \leq \sum_{k=1}^{\infty}\left|f_{k}(x)\right|=g(x), f \in \mathcal{L}^{p}(X)$. Furthermore,

$$
\left|f(x)-\sum_{k=1}^{n} f_{k}(x)\right|^{p} \leq 2^{p} g(x)^{p} .
$$

Since $2^{p} g^{p} \in \mathcal{L}^{1}(X)$, the LDCT implies

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f(x)-\sum_{k=1}^{n} f_{k}(x)\right|^{p} d \mu(x)=0
$$

Thus

$$
\left\|f-\sum_{k=1}^{n} f_{k}\right\|_{p} \rightarrow 0
$$

as required.

That's Enough for Today

- That is enough for now.

