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Getting Started

We should be recording!

Questions?

We will have one more homework assignment due on Tuesday,
November 17th.

There will be a final exam, really a “final homework set” due
by the end of the day on Monday, November 30th.

When should I “release it”?
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Loose Ends

Proposition

If (X ,M, µ) is a measure space, then integrable simple functions
are dense in Lp(X ,M, µ) for 1 ≤ p <∞.

Proposition

Integrable step functions are dense in Lp(R,L,m) for 1 ≤ p <∞.

Proposition

Cc(R) is dense in Lp(R,L,m) for 1 ≤ p <∞.

Proof.

I leave these to you as well figuring out what happens in the case
p =∞.
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The Heck with Measure Completions

Remark

Suppose that (X ,M, µ) is a measure space, and let (X ,M0, µ0)
be its completion. Suppose 1 ≤ p ≤ ∞. Recall that if f : X → C
is µ-measurable, then it is µ0-measurable. Furthermore, the map
sending the equivalence class [f ] ∈ Lp(X ,M, µ) to the equivalence
class [f ]0 of f in Lp(X ,M0, µ0) is surjective by HW#39 as well as
norm-preserving—we would say isometric. Therefore [f ] 7→ [f ]0
induces an isometric isomorphism of Lp(X ,M, µ) onto
Lp(X ,M0, µ0). For example, there is no difference as Banach
spaces between Lp(R,B(R),m) and Lp(R,L,m). Alternatively,
given [f ] ∈ Lp(R), we can always assume f is Borel if we wish.

Dana P. Williams Math 73/103: Fall 2020 Lecture 25



Looking Ahead to Functional Analysis

Definition

If V is a normed (complex) vector space, then a linear map
ϕ : V → C is called a linear functional. We say that ϕ is bounded
if

‖ϕ‖ := sup
‖v‖≤1

|ϕ(v)| <∞.

The set V ∗ of bounded linear functionals is called the dual of V .

Example

If V is finite dimensional with basis { v1, . . . , vn }, then you will see
in Math 113 that every linear functional is bounded and that V ∗ is
finite dimensional with dual basis { v∗1 , . . . , v∗n } where
v∗k (α1v1 + · · ·+ αnvn) = αk . The situation is much more complex
in infinite dimensions.
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Continuity Implies Bounded

Proposition

Let ϕ be a linear functional on V . If ϕ is bounded, then ϕ is continuous
and

|ϕ(v)| ≤ ‖ϕ‖‖v‖. (∗)

Conversely, if ϕ is continuous, then ϕ is bounded. In fact, it suffices for ϕ
to be continuous at 0 ∈ V .

Proof.

Suppose ϕ ∈ V ∗. Then for all v ∈ V \ {0}, we have

|ϕ(v)| =
∣∣∣ϕ( v

‖v‖

)∣∣∣‖v‖ ≤ ‖ϕ‖‖v‖.
This proves (∗). But then

|ϕ(v)− ϕ(w)| = |ϕ(v − w)| ≤ ‖ϕ‖‖v − w‖,

and ϕ is continuous—uniformly continuous in fact.
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Proof

Proof Continued.

Now suppose that ϕ is continuous at 0. Then ϕ−1(BC
1 (0)) is a

neighborhood of 0 in V . Thus there is an ε > 0 such that
BV
2ε(0) ⊂ ϕ−1(BC

1 (0)). Now if ‖v‖ ≤ 1, εv ∈ BV
2ε(0) and we have

|ϕ(v)| =
1

ε
|ϕ(εv)| ≤ 1

ε
.

Since ‖v‖ ≤ 1 was arbitrary, ‖ϕ‖ ≤ 1
ε <∞.
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Hey, Measure Theory, Remember!

Example

Let (X ,M, µ) be a measure space. Suppose that 1 ≤ p ≤ ∞ and
1
p + 1

q = 1. Fix g ∈ Lq(X ) and define ϕg : Lp(X )→ C by

ϕg (f ) =

∫
X
f (x)g(x) dµ(x).

This makes sense because

|ϕg (f )| ≤
∫
X
|f (x)g(x)| dµ(x) = ‖fg‖1 ≤ ‖f ‖p‖g‖q <∞.

More to the point, we can view ϕg as a linear functional on
Lp(X )—technically sending [f ] 7→ ϕg (f )—and this functional is
bounded with ‖ϕg‖ ≤ ‖g‖q. As usual, we ignore equivalence
classes of functions whenever possible.
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Isometric

Definition

If (X ,M, µ) is a measure space, then we say that µ is semifinte if
whenever E ∈M and µ(E ) =∞, then there is a K ⊂ E such that
0 < µ(K ) <∞.

Remark

σ-finite measures are semifinite, but the converse can fail.

Proposition

Suppose that (X ,M, µ) is a measure space and that 1 ≤ q <∞.
Then for all g ∈ Lq(X ),

‖ϕg‖ = ‖g‖q. (†)

If µ is semifinite, then (†) holds for q =∞ as well.
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Proof

Proof.

We already know that ‖ϕg‖ ≤ ‖g‖q. We certainly have equality if
g ∼ 0, so we can assume ‖g‖q > 0. Let 1 < q <∞ and define

sgn(z) =

{
z
|z| if z ∈ C \ {0}, and

0 if z = 0.

Note that g(x) = |g(x)| sgn(g(x)) for all x ∈ X . Then let

f (x) = ‖g‖1−qq |g(x)|q−1sgn(g(x)).

Then return

‖f ‖pp = ‖g‖p−pqq

∫
X
|g(x)|pq−p dµ(x)

= ‖g‖−qq

∫
X
|g(x)|q dµ(x) = 1.
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Proof

Proof Continued.

Therefore

‖ϕg‖ ≥ |ϕg (f )| = ‖g‖1−qq

∫
X
|g(x)|q dµ(x) = ‖g‖q.

This takes care of 1 < q <∞. If q = 1, then we can let
f (x) = sgn(g(x)). Then ‖f ‖∞ = 1 and

ϕg (f ) =

∫
X
|g(x)| dµ(x) = ‖g‖1.

This takes care of q = 1.
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Proof

Proof Continued.

Now suppose q =∞. Let ε > 0 and set
A = { x : |g(x)| > ‖g‖∞ − ε }. By definition of the essential
supremum, µ(A) > 0. If µ is semifinite, then there is a B ⊂ A such
that 0 < µ(B) <∞. Let

f (x) = µ(B)−1sgn(g(x))1B(x).

Now ‖f ‖1 = 1 and

‖ϕg‖ ≥ |ϕg (f )| =
∣∣∣∫

X
f (x)g(x) dµ(x)

∣∣∣
=

1

µ(B)

∫
B
|g(x)| dµ(x) ≥ ‖g‖∞ − ε.

Since ε > 0 is arbitrary, ‖ϕg‖ ≥ ‖g‖∞. This completes the
proof.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Technicalities

Corollary

If (X ,M, µ) is a measure space, then the map g 7→ ϕg is an
isometric linear injection of Lq(X ) into Lp(X )∗ for 1 ≤ q <∞. If
µ is semifinite, then this holds for q =∞ as well.

Notation

For a while, (X ,M, µ) will be an arbitrary measure space. We let
Σ be the complex vector space of integrable simple functions on
X . Note that if f ∈ Σ, then

f =
n∑

k=1

ak1Ek

with µ(Ek) <∞ for all 1 ≤ k ≤ n. In particular, Σ ⊂ Lp(X ) for all
1 ≤ p ≤ ∞.
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Simple Functions

Remark

Suppose that f : X → C is measurable. Then
f = u1 − u2 + i(u3 − u4) where each uk : X → [0,∞) is
measurable with u1u2 = 0 and u3u4 = 0. Then there are MNNSFs
sn,k ↗ uk . Hence fn = sn,1 − sn,2 + i(sn,3 − sn,4) is a simple
function and (fn) converges pointwise to f . Note that for each n,
sn,1 · sn,2 = 0 and sn,3 · sn,4 = 0. It follows that |Re(fn)| ≤ |Re(f )|
and | Im(fn)| ≤ | Im(f )|. Hence |fn| ≤ |f |.
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Technical Proposition

Proposition

Suppose that g : X → C is measurable and that fg ∈ L1(X ) for all
f ∈ Σ. If 1

p + 1
q = 1, then let

Mq(g) := sup{ |ϕg (f )| : f ∈ Σ and ‖f ‖p = 1 }.

If Mq(g) <∞ and if either

1 Sg := { x : |g(x)| > 0 } is σ-finite, or

2 µ is semifinite,

then g ∈ Lq(X ) and Mq(g) = ‖g‖q.
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Preliminaries

Lemma

Let g and Mq(g) be as in the Proposition. Suppose that f is a
bounded measurable function that vanishes off a set E of finite
measure such that ‖f ‖p = 1. Then∣∣∣∫

X
f (x)g(x) dµ(x)

∣∣∣ ≤ Mq(g). return

Proof.

By our earlier remark, there are measurable simple functions fn
such that fn → f pointwise with |fn| ≤ |f |. Then each fn vanishes
off E and |fn| ≤ ‖f ‖∞1E . Since ‖f ‖∞1E · g ∈ L1(X ) by
assumption on g , the LDCT implies,∣∣∣∫

X
fg dµ

∣∣∣ = lim
n

∣∣∣∫
X
fng dµ

∣∣∣ ≤ Mq(g).
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Proof of the Proposition

Proof of the Proposition.

Assume q <∞. We will show in HW#51 that if Mq(g) <∞ and
µ is semifinite, then Sg is σ-finite. Hence for q <∞, we will
proceed under the assumption that Sg is σ-finite. Suppose
Sg =

⋃
n En with En ⊂ En+1 and µ(En) <∞ for all n. Let (ϕn) be

a sequence of measurable simple functions such that ϕn → g
pointwise and |ϕn| ≤ |g |. Let gn = ϕn · 1En . Then gn → g
pointwise, |gn| ≤ |g |, and gn vanishes off En. Let

fn(x) = ‖gn‖1−qq · |gn(x)|q−1 · sgn(g(x)).

Then fn is a bounded function vanishing off En and we can
compute, just as we did earlier , that ‖fn‖p = 1. Furthermore,∫

X
|fn(x)gn(x)| dµ(x) = ‖gn‖1−qq

∫
X
|gn(x)|q dµ(x) = ‖gn‖q.
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Proof

Proof Continued.

By Fatou’s Lemma

‖g‖qq =

∫
X

|g(x)|q dµ(x) ≤ lim inf
n

∫
X

|gn(x)|q dµ(x) = lim inf
n
‖gn‖qq.

Hence

‖g‖q ≤ lim inf
n
‖gn‖q = lim inf

n

∫
X

|fngn| dµ

≤ lim inf

∫
X

|fng | dµ = lim inf
n

∫
X

fng dµ

≤ lim inf
n

∣∣∣∫
X

fng dµ
∣∣∣ ≤ Mq(g)

where we used our lemma for the last inequality. Our assumption that
Mq(g) <∞ shows that g ∈ Lq(X ). Then Hölder implies that
Mq(g) ≤ ‖g‖q. Therefore we have proved the result when q <∞.
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Proof

Proof Continued.

Now assume q =∞ and let ε > 0. Let

A = { x : |g(x)| ≥ M∞(g) + ε }.

Suppose that µ(A) > 0. Note that A ⊂ Sg . Hence if either µ is
semifinite or if Sg is σ-finite, there is a B ⊂ A such that

0 < µ(B) <∞. Let f = µ(B)−1sgn(g)1B . Then ‖f ‖1 = 1, and

ϕg (f ) =

∫
X
fg dµ =

1

µ(B)

∫
B
|g | dµ ≥ M∞(g) + ε.

But f is a bounded function vanishing off a set of finite measure so
our lemma implies |ϕg (f )| < M∞(g) which leads to a
contradiction. Hence µ(A) = 0 and ‖g‖∞ ≤ M∞(g). Just as
above, this implies g ∈ L∞(X ) and then Hölder implies
M∞(g) = ‖g‖∞.
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Preview of Coming Attactions

Theorem

Suppose that (X ,M, µ) is any measure space and 1
p + 1

q = 1. If
1 < p <∞, then g 7→ ϕg is an isometric isomorphism of Lq(X )
onto Lp(X )∗. If µ is σ-finite, then g 7→ ϕg is an isometric
isomorphism of L∞(X ) onto L1(X )∗.

Remark

We will prove this Wednesday employing our technical proposition.
I find it remarkable that there are no assumptions on (X ,M, µ)
when 1 < p <∞. The restriction to σ-finiteness is necessary when
p = 1. There isn’t much useful to say about L∞(X )∗ except for
trivial special cases.
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That’s Enough for Today

That is enough for now.
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