Math 73/103: Fall 2020 Lecture 25

Dana P. Williams

Dartmouth College

Monday, November 9, 2020

- We should be recording!
- Questions?
- We will have one more homework assignment due on Tuesday, November 17th.
- There will be a final exam, really a "final homework set" due by the end of the day on Monday, November 30th.
- When should I "release it"?

Proposition

If (X, \mathcal{M}, μ) is a measure space, then integrable simple functions are dense in $L^p(X, \mathcal{M}, \mu)$ for $1 \le p < \infty$.

Proposition

Integrable step functions are dense in $L^{p}(\mathbf{R}, \mathcal{L}, m)$ for $1 \leq p < \infty$.

Proposition

 $C_c(\mathbf{R})$ is dense in $L^p(\mathbf{R}, \mathcal{L}, m)$ for $1 \leq p < \infty$.

Proof.

I leave these to you as well figuring out what happens in the case

 $p = \infty$.

Remark

Suppose that (X, \mathcal{M}, μ) is a measure space, and let $(X, \mathcal{M}_0, \mu_0)$ be its completion. Suppose $1 \leq p \leq \infty$. Recall that if $f : X \to \mathbf{C}$ is μ -measurable, then it is μ_0 -measurable. Furthermore, the map sending the equivalence class $[f] \in L^p(X, \mathcal{M}, \mu)$ to the equivalence class $[f]_0$ of f in $L^p(X, \mathcal{M}_0, \mu_0)$ is surjective by HW#39 as well as norm-preserving—we would say isometric. Therefore $[f] \mapsto [f]_0$ induces an isometric isomorphism of $L^p(X, \mathcal{M}, \mu)$ onto $L^p(X, \mathcal{M}_0, \mu_0)$. For example, there is no difference as Banach spaces between $L^p(\mathbf{R}, \mathcal{B}(\mathbf{R}), m)$ and $L^p(\mathbf{R}, \mathcal{L}, m)$. Alternatively, given $[f] \in L^p(\mathbf{R})$, we can always assume f is Borel if we wish.

Definition

If V is a normed (complex) vector space, then a linear map $\varphi: V \to \mathbf{C}$ is called a linear functional. We say that φ is bounded if

$$\|arphi\|:=\sup_{\|m{v}\|\leq 1}|arphi(m{v})|<\infty.$$

The set V^* of bounded linear functionals is called the dual of V.

Example

If V is finite dimensional with basis $\{v_1, \ldots, v_n\}$, then you will see in Math 113 that every linear functional is bounded and that V^* is finite dimensional with dual basis $\{v_1^*, \ldots, v_n^*\}$ where $v_k^*(\alpha_1v_1 + \cdots + \alpha_nv_n) = \alpha_k$. The situation is much more complex in infinite dimensions.

Continuity Implies Bounded

Proposition

Let φ be a linear functional on V. If φ is bounded, then φ is continuous and

$$|\varphi(\mathbf{v})| \le \|\varphi\| \|\mathbf{v}\|. \tag{(*)}$$

Conversely, if φ is continuous, then φ is bounded. In fact, it suffices for φ to be continuous at $0 \in V$.

Proof.

Suppose $\varphi \in V^*$. Then for all $v \in V \setminus \{0\}$, we have

$$|\varphi(\mathbf{v})| = \left|\varphi\left(\frac{\mathbf{v}}{\|\mathbf{v}\|}\right)\right| \|\mathbf{v}\| \le \|\varphi\| \|\mathbf{v}\|.$$

This proves (*). But then

$$|\varphi(\mathbf{v}) - \varphi(\mathbf{w})| = |\varphi(\mathbf{v} - \mathbf{w})| \le \|\varphi\|\|\mathbf{v} - \mathbf{w}\|,$$

and φ is continuous—uniformly continuous in fact.

Proof Continued.

Now suppose that φ is continuous at 0. Then $\varphi^{-1}(B_1^{\mathbf{C}}(0))$ is a neighborhood of 0 in V. Thus there is an $\epsilon > 0$ such that $B_{2\epsilon}^V(0) \subset \varphi^{-1}(B_1^{\mathbf{C}}(0))$. Now if $||v|| \leq 1$, $\epsilon v \in B_{2\epsilon}^V(0)$ and we have

$$|arphi(m{
u})| = rac{1}{\epsilon} |arphi(\epsilonm{
u})| \leq rac{1}{\epsilon}$$

Since $\|v\| \leq 1$ was arbitrary, $\|\varphi\| \leq \frac{1}{\epsilon} < \infty$.

Example

Let (X, \mathcal{M}, μ) be a measure space. Suppose that $1 \leq p \leq \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Fix $g \in \mathcal{L}^q(X)$ and define $\varphi_g : \mathcal{L}^p(X) \to \mathbf{C}$ by

$$\varphi_{g}(f) = \int_{X} f(x)g(x) \, d\mu(x).$$

This makes sense because

$$|\varphi_g(f)| \leq \int_X |f(x)g(x)| d\mu(x) = \|fg\|_1 \leq \|f\|_p \|g\|_q < \infty.$$

More to the point, we can view φ_g as a linear functional on $L^p(X)$ —technically sending $[f] \mapsto \varphi_g(f)$ —and this functional is bounded with $\|\varphi_g\| \le \|g\|_q$. As usual, we ignore equivalence classes of functions whenever possible.

Definition

If (X, \mathcal{M}, μ) is a measure space, then we say that μ is semifinte if whenever $E \in \mathcal{M}$ and $\mu(E) = \infty$, then there is a $K \subset E$ such that $0 < \mu(K) < \infty$.

Remark

 σ -finite measures are semifinite, but the converse can fail.

Proposition

Suppose that (X, \mathcal{M}, μ) is a measure space and that $1 \leq q < \infty$. Then for all $g \in \mathcal{L}^q(X)$,

$$\|\varphi_g\| = \|g\|_q. \tag{\dagger}$$

If μ is semifinite, then (†) holds for $q = \infty$ as well.

Proof.

We already know that $\|\varphi_g\| \le \|g\|_q$. We certainly have equality if $g \sim 0$, so we can assume $\|g\|_q > 0$. Let $1 < q < \infty$ and define

$$\operatorname{sgn}(z) = egin{cases} rac{z}{|z|} & \operatorname{if} z \in \mathbf{C} \setminus \{0\}, \ \operatorname{and} \\ 0 & \operatorname{if} z = 0. \end{cases}$$

Note that $g(x) = |g(x)| \operatorname{sgn}(g(x))$ for all $x \in X$. Then let

$$f(x) = \|g\|_q^{1-q} |g(x)|^{q-1} \overline{\operatorname{sgn}(g(x))}.$$

Then **return**

$$\begin{aligned} \|f\|_{p}^{p} &= \|g\|_{q}^{p-pq} \int_{X} |g(x)|^{pq-p} \, d\mu(x) \\ &= \|g\|_{q}^{-q} \int_{X} |g(x)|^{q} \, d\mu(x) = 1. \end{aligned}$$

Proof Continued.

Therefore

$$\|\varphi_g\| \ge |\varphi_g(f)| = \|g\|_q^{1-q} \int_X |g(x)|^q \, d\mu(x) = \|g\|_q.$$

This takes care of $1 < q < \infty$. If q = 1, then we can let $f(x) = \overline{\text{sgn}(g(x))}$. Then $||f||_{\infty} = 1$ and

$$\varphi_g(f) = \int_X |g(x)| \, d\mu(x) = \|g\|_1.$$

This takes care of q = 1.

Proof Continued.

Now suppose $q = \infty$. Let $\epsilon > 0$ and set $A = \{ x : |g(x)| > ||g||_{\infty} - \epsilon \}$. By definition of the essential supremum, $\mu(A) > 0$. If μ is semifinite, then there is a $B \subset A$ such that $0 < \mu(B) < \infty$. Let

$$f(x) = \mu(B)^{-1}\overline{\operatorname{sgn}(g(x))}\mathbb{1}_B(x).$$

Now $\|f\|_1 = 1$ and

$$\begin{aligned} \|\varphi_{g}\| &\geq |\varphi_{g}(f)| = \left| \int_{X} f(x)g(x) \, d\mu(x) \right| \\ &= \frac{1}{\mu(B)} \int_{B} |g(x)| \, d\mu(x) \geq \|g\|_{\infty} - \epsilon \end{aligned}$$

Since $\epsilon>0$ is arbitrary, $\|\varphi_g\|\geq \|g\|_\infty.$ This completes the proof.

- Definitely time for a break.
- Questions?
- Start recording again.

Corollary

If (X, \mathcal{M}, μ) is a measure space, then the map $g \mapsto \varphi_g$ is an isometric linear injection of $L^q(X)$ into $L^p(X)^*$ for $1 \le q < \infty$. If μ is semifinite, then this holds for $q = \infty$ as well.

Notation

For a while, (X, \mathcal{M}, μ) will be an arbitrary measure space. We let Σ be the complex vector space of integrable simple functions on X. Note that if $f \in \Sigma$, then

$$f = \sum_{k=1}^{n} a_k \mathbb{1}_{E_k}$$

with $\mu(E_k) < \infty$ for all $1 \le k \le n$. In particular, $\Sigma \subset \mathcal{L}^p(X)$ for all $1 \le p \le \infty$.

Remark

Suppose that $f: X \to \mathbf{C}$ is measurable. Then $f = u_1 - u_2 + i(u_3 - u_4)$ where each $u_k: X \to [0, \infty)$ is measurable with $u_1u_2 = 0$ and $u_3u_4 = 0$. Then there are MNNSFs $s_{n,k} \nearrow u_k$. Hence $f_n = s_{n,1} - s_{n,2} + i(s_{n,3} - s_{n,4})$ is a simple function and (f_n) converges pointwise to f. Note that for each n, $s_{n,1} \cdot s_{n,2} = 0$ and $s_{n,3} \cdot s_{n,4} = 0$. It follows that $|\operatorname{Re}(f_n)| \le |\operatorname{Re}(f)|$ and $|\operatorname{Im}(f_n)| \le |\operatorname{Im}(f)|$. Hence $|f_n| \le |f|$.

Proposition

Suppose that $g : X \to \mathbf{C}$ is measurable and that $fg \in \mathcal{L}^1(X)$ for all $f \in \Sigma$. If $\frac{1}{p} + \frac{1}{q} = 1$, then let $M_q(g) := \sup\{ |\varphi_g(f)| : f \in \Sigma \text{ and } \|f\|_p = 1 \}.$ If $M_q(g) < \infty$ and if either $\mathbf{O}_g := \{ x : |g(x)| > 0 \}$ is σ -finite, or \mathbf{O}_μ is semifinite, then $g \in \mathcal{L}^q(X)$ and $M_q(g) = \|g\|_q.$

Preliminaries

Lemma

Let g and $M_q(g)$ be as in the Proposition. Suppose that f is a bounded measurable function that vanishes off a set E of finite measure such that $||f||_p = 1$. Then

$$\left|\int_X f(x)g(x)\,d\mu(x)\right| \leq M_q(g).$$

Proof.

By our earlier remark, there are measurable simple functions f_n such that $f_n \to f$ pointwise with $|f_n| \le |f|$. Then each f_n vanishes off E and $|f_n| \le ||f||_{\infty} \mathbb{1}_E$. Since $||f||_{\infty} \mathbb{1}_E \cdot g \in \mathcal{L}^1(X)$ by assumption on g, the LDCT implies,

$$\left|\int_{X} fg \, d\mu\right| = \lim_{n} \left|\int_{X} f_{n}g \, d\mu\right| \leq M_{q}(g).$$

Proof of the Proposition.

Assume $q < \infty$. We will show in HW#51 that if $M_q(g) < \infty$ and μ is semifinite, then S_g is σ -finite. Hence for $q < \infty$, we will proceed under the assumption that S_g is σ -finite. Suppose $S_g = \bigcup_n E_n$ with $E_n \subset E_{n+1}$ and $\mu(E_n) < \infty$ for all n. Let (φ_n) be a sequence of measurable simple functions such that $\varphi_n \to g$ pointwise and $|\varphi_n| \le |g|$. Let $g_n = \varphi_n \cdot \mathbb{1}_{E_n}$. Then $g_n \to g$ pointwise, $|g_n| \le |g|$, and g_n vanishes off E_n . Let

$$f_n(x) = \|g_n\|_q^{1-q} \cdot |g_n(x)|^{q-1} \cdot \overline{\operatorname{sgn}(g(x))}.$$

Then f_n is a bounded function vanishing off E_n and we can compute, just as we did \bigcirc arriver, that $||f_n||_p = 1$. Furthermore,

$$\int_X |f_n(x)g_n(x)| \, d\mu(x) = \|g_n\|_q^{1-q} \int_X |g_n(x)|^q \, d\mu(x) = \|g_n\|_q.$$

Proof Continued.

By Fatou's Lemma

$$\|g\|_q^q = \int_X |g(x)|^q d\mu(x) \le \liminf_n \int_X |g_n(x)|^q d\mu(x) = \liminf_n \|g_n\|_q^q.$$

Hence

$$\begin{aligned} \|g\|_{q} &\leq \liminf_{n} \|g_{n}\|_{q} = \liminf_{n} \int_{X} |f_{n}g_{n}| \, d\mu \\ &\leq \liminf_{n} \int_{X} |f_{n}g| \, d\mu = \liminf_{n} \int_{X} f_{n}g \, d\mu \\ &\leq \liminf_{n} \left| \int_{X} f_{n}g \, d\mu \right| \leq M_{q}(g) \end{aligned}$$

where we used our \ref{lemma} for the last inequality. Our assumption that $M_q(g) < \infty$ shows that $g \in \mathcal{L}^q(X)$. Then Hölder implies that $M_q(g) \leq \|g\|_q$. Therefore we have proved the result when $q < \infty$.

Proof Continued.

Now assume $q = \infty$ and let $\epsilon > 0$. Let

$$A = \{ x : |g(x)| \ge M_{\infty}(g) + \epsilon \}.$$

Suppose that $\mu(A) > 0$. Note that $A \subset S_g$. Hence if either μ is semifinite or if S_g is σ -finite, there is a $B \subset A$ such that $0 < \mu(B) < \infty$. Let $f = \mu(B)^{-1}\overline{\operatorname{sgn}(g)}\mathbb{1}_B$. Then $\|f\|_1 = 1$, and

$$arphi_{m{g}}(f) = \int_X f g \ d\mu = rac{1}{\mu(B)} \int_B |g| \ d\mu \geq M_\infty(g) + \epsilon.$$

But f is a bounded function vanishing off a set of finite measure so our lemma implies $|\varphi_g(f)| < M_{\infty}(g)$ which leads to a contradiction. Hence $\mu(A) = 0$ and $||g||_{\infty} \le M_{\infty}(g)$. Just as above, this implies $g \in \mathcal{L}^{\infty}(X)$ and then Hölder implies $M_{\infty}(g) = ||g||_{\infty}$.

Theorem

Suppose that (X, \mathcal{M}, μ) is any measure space and $\frac{1}{p} + \frac{1}{q} = 1$. If $1 , then <math>g \mapsto \varphi_g$ is an isometric isomorphism of $L^q(X)$ onto $L^p(X)^*$. If μ is σ -finite, then $g \mapsto \varphi_g$ is an isometric isomorphism of $L^{\infty}(X)$ onto $L^1(X)^*$.

Remark

We will prove this Wednesday employing our technical proposition. I find it remarkable that there are no assumptions on (X, \mathcal{M}, μ) when $1 . The restriction to <math>\sigma$ -finiteness is necessary when p = 1. There isn't much useful to say about $L^{\infty}(X)^*$ except for trivial special cases. • That is enough for now.