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Getting Started

We should be recording!

Questions?

Our last homework assignment—problems #46–#54—are due
Tuesday via gradescope.

The final exam, really a “final homework set” is due by the
end of the day on Monday, November 30th and will be turned
in via gradescope.

I will send the exam out via email. When should I “release it”?
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Last Time

Proposition (Technical Result)

Suppose that (X ,M, µ) is a measure space and that Σ is the
subspace of integrable measurable simple functions. Suppose that
g : X → C is measurable and that fg ∈ L1(X ) for all f ∈ Σ. If
1
p + 1

q = 1, then let

Mq(g) := sup{ |ϕg (f )| : f ∈ Σ and ‖f ‖p = 1 }.

If Mq(g) <∞ and if either

1 Sg := { x : |g(x)| > 0 } is σ-finite, or

2 µ is semifinite,

then g ∈ Lq(X ) and Mq(g) = ‖g‖q.
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Mea Culpa

Lemma

Let g and Mq(g) be as in the Proposition. Suppose that f is a
bounded measurable function that vanishes off a set E of finite
measure such that ‖f ‖p = 1. Then∣∣∣∫

X
f (x)g(x) dµ(x)

∣∣∣ ≤ Mq(g).

Proof.

By our earlier remark, there are measurable simple functions fn
such that fn → f pointwise with |fn| ≤ |f |. Then each fn vanishes
off E and |fn| ≤ ‖f ‖∞1E . Since ‖f ‖∞1E · g ∈ L1(X ) by
assumption on g , the LDCT implies,∣∣∣∫

X
fg dµ

∣∣∣ = lim
n

∣∣∣∫
X
fng dµ

∣∣∣ ≤ Mq(g).
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Radon Nikodym Revisited

Theorem (Radon Nikodym for Complex Measures)

Suppose that (X ,M, µ) is a σ-finite measure space and that ν is a
complex measure on (X ,M) such that ν(E ) = 0 whenever
µ(E ) = 0. Then there is a f ∈ L1(µ) such that

ν(E ) =

∫
E
f (x) dµ(x) for all E ∈M,

and f is determined up to a µ null set.

Remark

We could write ν � µ and f = dν
dµ , but we will reserve these

notations for (positive) measures in this course.
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Proof

Proof.

To start with, assume ν is a real-valued measure with Jordan
decomposition ν = ν+ − ν−. Then ν± are mutually singular finite
(positive) measures. Therefore we have a partition X = P ∪ N so
that ν+(E ) = ν(E ∩ P) and ν−(E ) = ν(E ∩ N). Suppose
µ(E ) = 0. Then µ(E ∩ P) = 0, and hence by assumption,
ν(E ∩ P) = 0. But then ν+(E ) = ν+(E ∩ P) = ν(E ∩ P) = 0.
Therefore ν+ � µ. By the Radon-Nikodym Theorem, there is a
measurable function f + : X → [0,∞) such that

ν+(E ) =

∫
E
f +(x) dµ(x) for all E ∈M. (1)

Since ν+(X ) <∞, f + ∈ L1(µ).
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Proof

Proof Continued.

Similarly, ν− � µ and there is a f − ∈ L1(µ) such that (1) holds
for ν−. Hence

ν(E ) =

∫
E
f (x) dµ(x) for all E ∈M

where f = f + − f − ∈ L1(µ).

We get the full result by writing ν = Re(ν) + i Im(ν) and observing
that the above applies to the real-valued measures Re(ν) and
Im(ν).

Uniqueness is determined exactly as before.
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Last Time

We have the following key result from the previous lecture:

Corollary (Isometric)

Suppose that (X ,M, µ) is a measure space and that 1
p + 1

q = 1. If
g ∈ Lq(X ), then we define ϕg : Lp(X )→ C by

ϕg (f ) =

∫
X
f (x)g(x) dµ(x).

If 1 ≤ q <∞, then g 7→ ϕg is an isometric linear injection of
Lq(X ) into Lp(X )∗. If µ is semifinite, then this holds for q =∞
and p = 1 as well.
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Uniqueness

Corollary (Uniqueness)

If g and g ′ are in Lq(X ,M, µ) and ϕg = ϕg ′ , then g ∼ g ′ if
1 ≤ q <∞ and also for q =∞ if µ is semifinite.

Proof.

If ϕg = ϕg ′ , then ϕg−g ′ = 0 and ‖g − g ′‖q = 0.
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The Big Theorem

Theorem

Suppose that (X ,M, µ) is any measure space and 1
p + 1

q = 1. If
1 < p <∞, then g 7→ ϕg is an isometric isomorphism of Lq(X )
onto Lp(X )∗. If µ is σ-finite, then g 7→ ϕg is an isometric
isomorphism of L∞(X ) onto L1(X )∗.

Proof.

In view of our corollary from last lecture, it will suffice to show
that if ϕ ∈ Lp(X )∗, then there is a g ∈ Lq(X ) such that ϕ = ϕg .

To start with, we assume 1 ≤ p <∞ and µ(X ) <∞.
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Proof

Proof Continued.

Since µ(X ) <∞, 1E ∈ Lp(X ) for all E ∈M. Hence we can define

ν :M→ C by ν(E ) = ϕ(1E ).

Suppose that E ∈M is the disjoint union
⋃
En. Then

∥∥∥1E −
n∑

k=1

1Ek

∥∥∥
p

=
∥∥∥ ∞∑
k=n+1

1Ek

∥∥∥
p

= µ
( ∞⋃
k=n+1

Ek

) 1
p

which tends to 0 since µ is finite.

That is

1E =
∞∑
n=1

1En in Lp(X ).
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Proof

Proof Continued.

Then, since ϕ is continuous,

ν(E ) = ϕ(1E ) =
∞∑
n=1

ϕ(1En) =
∞∑
n=1

ν(En).

Therefore ν is a complex measure on (X ,M). Furthermore, if
µ(E ) = 0, then 1E = 0 in Lp(X ) and ν(E ) = ϕ(1E ) = 0. (That is,
“ν � µ”.) Hence, by our Radon-Nikodym Theorem for complex
measures, there is a h ∈ L1(µ) such that

ϕ(1E ) = ν(E ) =

∫
E
h(x) dµ(x) =

∫
X

1E (x)h(x) dµ(x)

for all E ∈M.
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Proof

Proof Continued.

Consequently,

ϕ(f ) =

∫
X
f (x)h(x) dµ(x)

for all (necessarily integrable) simple functions f . Since ϕ is
bounded,∣∣∣∫

X
f (x)h(x) dµ(x)

∣∣∣ ≤ ‖f ‖p‖ϕ‖ ≤ ‖ϕ‖ for all f ∈ Σ.

Thus Mq(h) <∞ and our technical proposition implies that
h ∈ Lq(X ).

Since simple functions are dense in Lp(X ) and since ϕ and ϕh

agree on simple functions, we have ϕ = ϕh. Since ‖ϕ‖ = ‖h‖q, it
follows that h is determined µ-almost everywhere.

This completes the proof in the case µ is finite.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Proof in the σ-Finite Case

Proof Continued.

Now we suppose that µ is σ-finite and 1 ≤ p <∞. Say X =
⋃
En

with µ(En) <∞ and En ⊂ En+1. Let µn(E ) = µ(E ∩ En). As we
observed in our proof of the σ-finite case of the Radon-Nikodym
Theorem in Lecture 22, for f ≥ 0 we have∫

X
f (x) dµn(x) =

∫
X

1En(x)f (x) dµ(x).

Then if we let ϕn : Lp(X , µn)→ C be given by ϕn(f ) = ϕ(1En · f ),
then

|ϕn(f )| ≤ ‖ϕ‖‖1En · f ‖Lp(µ) = ‖ϕ‖‖f ‖Lp(µn)
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Proof

Proof Continued.

Thus ϕn ∈ Lp(µn)∗ with ‖ϕn‖ ≤ ‖ϕ‖, and there is a
hn ∈ Lq(X , µn) such that

ϕ(1En · f ) = ϕn(f ) =

∫
X
f (x)hn(x) dµn(x)

=

∫
X

1En(x)f (x)hn(x) dµ(x).

Hence we can assume hn(x) = 0 if x /∈ En. Furthermore, if n < m,
then hm(x) = hn(x) for µ-almost all x ∈ En. Let
gn = max{ h1, . . . , hn } and note that gn = hn µ-almost
everywhere.

Let g = supn gn = lim gn.
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Proof

Proof Continued.

Thus if 1 < p <∞, then 1 < q <∞ and∫
X
|g |q dµ MCT

= lim
n

∫
X
|gn|q dµ ≤ ‖ϕ‖q.

Thus g ∈ Lq(X ). If p = 1 and q =∞, then ‖gn‖∞ ≤ ‖ϕ‖ for all
n implies ‖g‖∞ ≤ ‖ϕ‖, and g ∈ L∞(X ).

Now if f ∈ Lp(X ) for 1 ≤ p <∞, then 1En · f → f pointwise and
|1En · f − f |p ≤ 2p|f |p ∈ L1(X ), so

1En · f → f in Lp(X ) by the LDCT.
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Proof

Proof Continued.

Therefore if f ∈ Lp and g ∈ Lq(X ) as above, then fg ∈ L1(X ) and

ϕ(f ) = lim
n
ϕ(1En · f ) = lim

n

∫
X

1En(x)f (x)hn(x) dµ(x)

= lim
n

∫
X

1En(x)f (x)gn(x) dµ(x)

LDCT
=

∫
X
f (x)g(x) dµ(x).

That is, ϕ = ϕg and we have established the result in the σ-finite
case for 1 ≤ p <∞.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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The General Case

Proof in the General Case.

We now make no assumptions on µ, but we restrict to 1 < p <∞.
Let E ⊂ X be σ-finite and let µE (A) = µ(A ∩ E ). Then µE is a
σ-finite measure on (X ,M) such that for all f ≥ 0∫

X
f (x) dµE (x) =

∫
X

1E (x)f (x) dµ(x).

Again we define ϕE (f ) = ϕ(1E f ). Then

|ϕE (f )| = |ϕ(1E f )| ≤ ‖ϕ‖‖1E f ‖Lp(µ) = ‖ϕ‖‖f ‖Lp(µE ).

Therefore ϕE ∈ Lp(X , µE )∗ and there is a gE ∈ Lq(X , µE ) such
that

ϕE (f ) =

∫
X
f (x)gE (x) dµE (x) =

∫
X

1E (x)f (x)gE (x) dµ(x).
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Proof

Proof Continued.

We can assume gE (x) = 0 if x /∈ E . Thus we can write ‖gE‖q
unambiguously. Note that ‖ϕE‖ = ‖gE‖q ≤ ‖ϕ‖. In particular, gE
is determined µ-almost everywhere on E . Thus if F ⊃ E is also
σ-finite, then gF = gE µ-almost everywhere on E and
‖gF‖q ≥ ‖gE‖q.

Let
M = sup{ ‖gE‖q : E is σ-finite }.

We have M ≤ ‖ϕ‖ <∞. Let {En } be σ-finite subsets such that
‖gEn‖q → M. Then F =

⋃
n En is σ-finite and

M ≥ ‖gF‖q ≥ ‖gEn‖q for all n. Hence ‖gF‖q = M.
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Proof

Proof Continued.

If A ⊃ F is σ-finite, then

gA = gF + gA\F

almost everywhere. Since q <∞,∫
X
|gF |q dµ+

∫
X
|gA\F |q dµ =

∫
X
|gA|q dµ ≤ Mq =

∫
X
|gF |q dµ

Therefore ‖gA\F‖q = 0 and gA\F = 0 almost everywhere so that
gA = gF almost everywhere.
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Proof

Proof Continued.

Thus if f ∈ Lp(X ), then A = F ∪ { x : |f (x)| > 0 } is σ-finite and

ϕ(f ) = ϕ(1Af ) =

∫
X
f (x)gA(x) dµ(x)

=

∫
X
f (x)gF (x) dµ(x).

Therefore, ϕ = ϕgF and we’re done.
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That’s Enough for Today

That is enough for now.
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