Math 73/103: Fall 2020 Lecture 26

Dana P. Williams

Dartmouth College

Wednesday, November 11, 2020

- We should be recording!
- Questions?
- Our last homework assignment—problems #46-#54—are due Tuesday via gradescope.
- The final exam, really a "final homework set" is due by the end of the day on Monday, November 30th and will be turned in via gradescope.
- I will send the exam out via email. When should I "release it"?

Proposition (Technical Result)

Suppose that (X, \mathcal{M}, μ) is a measure space and that Σ is the subspace of integrable measurable simple functions. Suppose that $g : X \to \mathbf{C}$ is measurable and that $fg \in \mathcal{L}^1(X)$ for all $f \in \Sigma$. If $\frac{1}{p} + \frac{1}{q} = 1$, then let

$$M_q(g) := \sup\{ |\varphi_g(f)| : f \in \Sigma \text{ and } \|f\|_p = 1 \}.$$

If $M_q(g) < \infty$ and if either

1
$$S_g := \{ x : |g(x)| > 0 \}$$
 is σ -finite, or

2 μ is semifinite,

then $g \in \mathcal{L}^q(X)$ and $M_q(g) = \|g\|_q$.

Mea Culpa

Lemma

Let g and $M_q(g)$ be as in the Proposition. Suppose that f is a bounded measurable function that vanishes off a set E of finite measure such that $||f||_p = 1$. Then

$$\left|\int_X f(x)g(x)\,d\mu(x)\right|\leq M_q(g).$$

Proof.

By our earlier remark, there are measurable simple functions f_n such that $f_n \to f$ pointwise with $|f_n| \le |f|$. Then each f_n vanishes off E and $|f_n| \le ||f||_{\infty} \mathbb{1}_E$. Since $||f||_{\infty} \mathbb{1}_E \cdot g \in \mathcal{L}^1(X)$ by assumption on g, the LDCT implies,

$$\left|\int_{X} fg \, d\mu\right| = \lim_{n} \left|\int_{X} f_{n}g \, d\mu\right| \leq M_{q}(g).$$

Theorem (Radon Nikodym for Complex Measures)

Suppose that (X, \mathcal{M}, μ) is a σ -finite measure space and that ν is a complex measure on (X, \mathcal{M}) such that $\nu(E) = 0$ whenever $\mu(E) = 0$. Then there is a $f \in \mathcal{L}^1(\mu)$ such that

$$u(E) = \int_E f(x) \, d\mu(x) \quad ext{for all } E \in \mathcal{M},$$

and f is determined up to a μ null set.

Remark

We could write $\nu \ll \mu$ and $f = \frac{d\nu}{d\mu}$, but we will reserve these notations for (positive) measures in this course.

Proof.

To start with, assume ν is a real-valued measure with Jordan decomposition $\nu = \nu^+ - \nu^-$. Then ν^\pm are mutually singular finite (positive) measures. Therefore we have a partition $X = P \cup N$ so that $\nu^+(E) = \nu(E \cap P)$ and $\nu^-(E) = \nu(E \cap N)$. Suppose $\mu(E) = 0$. Then $\mu(E \cap P) = 0$, and hence by assumption, $\nu(E \cap P) = 0$. But then $\nu^+(E) = \nu^+(E \cap P) = \nu(E \cap P) = 0$. Therefore $\nu^+ \ll \mu$. By the Radon-Nikodym Theorem, there is a measurable function $f^+: X \to [0, \infty)$ such that

$$\nu^+(E) = \int_E f^+(x) \, d\mu(x) \quad \text{for all } E \in \mathcal{M}. \tag{1}$$

Since $\nu^+(X) < \infty$, $f^+ \in \mathcal{L}^1(\mu)$.

Similarly, $\nu^- \ll \mu$ and there is a $f^- \in \mathcal{L}^1(\mu)$ such that (1) holds for ν^- . Hence

$$u(E) = \int_E f(x) d\mu(x) \text{ for all } E \in \mathcal{M}$$

where $f = f^+ - f^- \in \mathcal{L}^1(\mu)$.

We get the full result by writing $\nu = \text{Re}(\nu) + i \text{Im}(\nu)$ and observing that the above applies to the real-valued measures $\text{Re}(\nu)$ and $\text{Im}(\nu)$.

Uniqueness is determined exactly as before.

We have the following key result from the previous lecture:

Corollary (Isometric)

Suppose that (X, \mathcal{M}, μ) is a measure space and that $\frac{1}{p} + \frac{1}{q} = 1$. If $g \in \mathcal{L}^q(X)$, then we define $\varphi_g : \mathcal{L}^p(X) \to \mathbf{C}$ by

$$\varphi_g(f) = \int_X f(x)g(x)\,d\mu(x).$$

If $1 \le q < \infty$, then $g \mapsto \varphi_g$ is an isometric linear injection of $L^q(X)$ into $L^p(X)^*$. If μ is semifinite, then this holds for $q = \infty$ and p = 1 as well.

Corollary (Uniqueness)

If g and g' are in $\mathcal{L}^q(X, \mathcal{M}, \mu)$ and $\varphi_g = \varphi_{g'}$, then $g \sim g'$ if $1 \leq q < \infty$ and also for $q = \infty$ if μ is semifinite.

Proof.

If
$$\varphi_g = \varphi_{g'}$$
, then $\varphi_{g-g'} = 0$ and $\|g - g'\|_q = 0$.

Theorem

Suppose that (X, \mathcal{M}, μ) is any measure space and $\frac{1}{p} + \frac{1}{q} = 1$. If $1 , then <math>g \mapsto \varphi_g$ is an isometric isomorphism of $L^q(X)$ onto $L^p(X)^*$. If μ is σ -finite, then $g \mapsto \varphi_g$ is an isometric isomorphism of $L^{\infty}(X)$ onto $L^1(X)^*$.

Proof.

In view of our corollary from last lecture, it will suffice to show that if $\varphi \in L^p(X)^*$, then there is a $g \in \mathcal{L}^q(X)$ such that $\varphi = \varphi_g$.

To start with, we assume $1 \le p < \infty$ and $\mu(X) < \infty$.

Proof

Proof Continued.

Since $\mu(X) < \infty$, $\mathbb{1}_E \in \mathcal{L}^p(X)$ for all $E \in \mathcal{M}$. Hence we can define

$$u : \mathcal{M} \to \mathbf{C} \quad \text{by} \quad \nu(E) = \varphi(\mathbb{1}_E).$$

Suppose that $E \in \mathcal{M}$ is the disjoint union $\bigcup E_n$. Then

$$\left\|\mathbb{1}_{E}-\sum_{k=1}^{n}\mathbb{1}_{E_{k}}\right\|_{p}=\left\|\sum_{k=n+1}^{\infty}\mathbb{1}_{E_{k}}\right\|_{p}=\mu\left(\bigcup_{k=n+1}^{\infty}E_{k}\right)^{\frac{1}{p}}$$

which tends to 0 since μ is finite.

That is

$$\mathbb{1}_E = \sum_{n=1}^{\infty} \mathbb{1}_{E_n} \quad \text{in } L^p(X).$$

Then, since φ is continuous,

$$\nu(E) = \varphi(\mathbb{1}_E) = \sum_{n=1}^{\infty} \varphi(\mathbb{1}_{E_n}) = \sum_{n=1}^{\infty} \nu(E_n).$$

Therefore ν is a complex measure on (X, \mathcal{M}) . Furthermore, if $\mu(E) = 0$, then $\mathbb{1}_E = 0$ in $L^p(X)$ and $\nu(E) = \varphi(\mathbb{1}_E) = 0$. (That is, " $\nu \ll \mu$ ".) Hence, by our Radon-Nikodym Theorem for complex measures, there is a $h \in \mathcal{L}^1(\mu)$ such that

$$\varphi(\mathbb{1}_E) = \nu(E) = \int_E h(x) \, d\mu(x) = \int_X \mathbb{1}_E(x) h(x) \, d\mu(x)$$

for all $E \in \mathcal{M}$.

Proof

Proof Continued.

Consequently,

$$\varphi(f) = \int_X f(x)h(x)\,d\mu(x)$$

for all (necessarily integrable) simple functions f. Since φ is bounded,

$$\left|\int_{X} f(x)h(x) \, d\mu(x)\right| \leq \|f\|_{p} \|\varphi\| \leq \|\varphi\| \quad \text{for all } f \in \Sigma.$$

Thus $M_q(h) < \infty$ and our technical proposition implies that $h \in \mathcal{L}^q(X)$.

Since simple functions are dense in $L^{p}(X)$ and since φ and φ_{h} agree on simple functions, we have $\varphi = \varphi_{h}$. Since $\|\varphi\| = \|h\|_{q}$, it follows that h is determined μ -almost everywhere.

This completes the proof in the case μ is finite.

- Definitely time for a break.
- Questions?
- Start recording again.

Now we suppose that μ is σ -finite and $1 \le p < \infty$. Say $X = \bigcup E_n$ with $\mu(E_n) < \infty$ and $E_n \subset E_{n+1}$. Let $\mu_n(E) = \mu(E \cap E_n)$. As we observed in our proof of the σ -finite case of the Radon-Nikodym Theorem in Lecture 22, for $f \ge 0$ we have

$$\int_X f(x) d\mu_n(x) = \int_X \mathbb{1}_{E_n}(x) f(x) d\mu(x).$$

Then if we let $\varphi_n : L^p(X, \mu_n) \to \mathbf{C}$ be given by $\varphi_n(f) = \varphi(\mathbb{1}_{E_n} \cdot f)$, then

$$|\varphi_n(f)| \leq \|\varphi\| \|\mathbb{1}_{E_n} \cdot f\|_{L^p(\mu)} = \|\varphi\| \|f\|_{L^p(\mu_n)}$$

Thus $\varphi_n \in L^p(\mu_n)^*$ with $\|\varphi_n\| \le \|\varphi\|$, and there is a $h_n \in \mathcal{L}^q(X, \mu_n)$ such that

$$arphi(\mathbbm{1}_{E_n}\cdot f) = arphi_n(f) = \int_X f(x)h_n(x) \, d\mu_n(x)
onumber \ = \int_X \mathbbm{1}_{E_n}(x)f(x)h_n(x) \, d\mu(x).$$

Hence we can assume $h_n(x) = 0$ if $x \notin E_n$. Furthermore, if n < m, then $h_m(x) = h_n(x)$ for μ -almost all $x \in E_n$. Let $g_n = \max\{h_1, \ldots, h_n\}$ and note that $g_n = h_n \mu$ -almost everywhere.

Let $g = \sup_n g_n = \lim g_n$.

Thus if $1 , then <math>1 < q < \infty$ and

$$\int_X |g|^q \, d\mu \stackrel{\mathsf{MCT}}{=} \lim_n \int_X |g_n|^q \, d\mu \leq \|\varphi\|^q.$$

Thus $g \in \mathcal{L}^q(X)$. If p = 1 and $q = \infty$, then $||g_n||_{\infty} \le ||\varphi||$ for all n implies $||g||_{\infty} \le ||\varphi||$, and $g \in \mathcal{L}^{\infty}(X)$.

Now if $f \in \mathcal{L}^{p}(X)$ for $1 \leq p < \infty$, then $\mathbb{1}_{E_{n}} \cdot f \to f$ pointwise and $|\mathbb{1}_{E_{n}} \cdot f - f|^{p} \leq 2^{p}|f|^{p} \in \mathcal{L}^{1}(X)$, so

$$\mathbb{1}_{E_n} \cdot f \to f$$
 in $L^p(X)$ by the LDCT.

Therefore if $f \in \mathcal{L}^p$ and $g \in \mathcal{L}^q(X)$ as above, then $fg \in \mathcal{L}^1(X)$ and

$$\varphi(f) = \lim_{n} \varphi(\mathbb{1}_{E_{n}} \cdot f) = \lim_{n} \int_{X} \mathbb{1}_{E_{n}}(x) f(x) h_{n}(x) d\mu(x)$$
$$= \lim_{n} \int_{X} \mathbb{1}_{E_{n}}(x) f(x) g_{n}(x) d\mu(x)$$
$$\stackrel{\text{LDCT}}{=} \int_{X} f(x) g(x) d\mu(x).$$

That is, $\varphi = \varphi_g$ and we have established the result in the σ -finite case for $1 \le p < \infty$.

- Definitely time for a break.
- Questions?
- Start recording again.

Proof in the General Case.

We now make no assumptions on μ , but we restrict to 1 . $Let <math>E \subset X$ be σ -finite and let $\mu_E(A) = \mu(A \cap E)$. Then μ_E is a σ -finite measure on (X, \mathcal{M}) such that for all $f \ge 0$

$$\int_X f(x) d\mu_E(x) = \int_X \mathbb{1}_E(x) f(x) d\mu(x).$$

Again we define $\varphi_E(f) = \varphi(\mathbb{1}_E f)$. Then

$$|\varphi_{\mathsf{E}}(f)| = |\varphi(\mathbb{1}_{\mathsf{E}}f)| \le \|\varphi\|\|\mathbb{1}_{\mathsf{E}}f\|_{L^p(\mu)} = \|\varphi\|\|f\|_{L^p(\mu_{\mathsf{E}})}.$$

Therefore $\varphi_E \in L^p(X, \mu_E)^*$ and there is a $g_E \in \mathcal{L}^q(X, \mu_E)$ such that

$$\varphi_E(f) = \int_X f(x)g_E(x) d\mu_E(x) = \int_X \mathbb{1}_E(x)f(x)g_E(x) d\mu(x).$$

We can assume $g_E(x) = 0$ if $x \notin E$. Thus we can write $||g_E||_q$ unambiguously. Note that $||\varphi_E|| = ||g_E||_q \le ||\varphi||$. In particular, g_E is determined μ -almost everywhere on E. Thus if $F \supset E$ is also σ -finite, then $g_F = g_E \mu$ -almost everywhere on E and $||g_F||_q \ge ||g_E||_q$.

Let

$$M = \sup\{ \|g_E\|_q : E \text{ is } \sigma \text{-finite} \}.$$

We have $M \leq ||\varphi|| < \infty$. Let $\{E_n\}$ be σ -finite subsets such that $||g_{E_n}||_q \to M$. Then $F = \bigcup_n E_n$ is σ -finite and $M \geq ||g_F||_q \geq ||g_{E_n}||_q$ for all n. Hence $||g_F||_q = M$.

If $A \supset F$ is σ -finite, then

$$g_A = g_F + g_{A\setminus F}$$

almost everywhere. Since $q < \infty$,

$$\int_X |g_F|^q \, d\mu + \int_X |g_{A\setminus F}|^q \, d\mu = \int_X |g_A|^q \, d\mu \le M^q = \int_X |g_F|^q \, d\mu$$

Therefore $||g_{A\setminus F}||_q = 0$ and $g_{A\setminus F} = 0$ almost everywhere so that $g_A = g_F$ almost everywhere.

Thus if $f \in \mathcal{L}^p(X)$, then $A = F \cup \{x : |f(x)| > 0\}$ is σ -finite and

$$\varphi(f) = \varphi(\mathbb{1}_A f) = \int_X f(x) g_A(x) d\mu(x)$$
$$= \int_X f(x) g_F(x) d\mu(x).$$

Therefore, $\varphi=\varphi_{\rm g_{\rm F}}$ and we're done.

• That is enough for now.