# Math 73/103: Fall 2020 Lecture 27 

Dana P. Williams<br>Dartmouth College

Friday, November 13, 2020

## Getting Started

- We should be recording!
- Questions?


## Review of Duality for $\mathcal{L}^{p}$

## Remark

Let $(X, \mathcal{M}, \mu)$ be a measure space. We showed that if $1<p<\infty$, then $g \mapsto \varphi_{g}$ is a isometric Banach space isomorphism of $L^{q}(X)$ onto $L^{p}(X)^{*}$ where

$$
\varphi_{g}(f):=\int_{X} f(x) g(x) d \mu(x) \quad \text { for all } f \in \mathcal{L}^{p}(X)
$$

## Remark

If $p=\infty$, then $g \mapsto \varphi_{g}$ is an isometric injection of $L^{1}(X)$ into $L^{\infty}(X)^{*}$, but this map never surjective except for trivial special cases.

## An Example

## Example (Where $g \mapsto \varphi_{g}$ is not onto $L^{\infty}(X)$ )

- Let $X=[0,1]$ and let $\mu=m$ be Lebesgue measure.
- Then we can view $C([0,1])$ as a subspace of $L^{\infty}([0,1])$ : the map $f \in C([0,1]) \mapsto[f] \in L^{\infty}([0,1])$ is an isometric linear map.
- The map $f \mapsto f(0)$ is a bounded linear functional on $C([0,1])$. In fact, this functional has norm 1.
- In Math 113, we will learn that every bounded linear functional on a subspace $M$ of a normed vector space $V$ has a norm preserving extension to the whole vector space $V$. This is called the Hahn-Banach Theorem.
- This means there must be a $\varphi \in L^{\infty}([0,1])^{*}$ such that $\varphi(f)=f(0)$ for all $f \in C([0,1])$.


## Example Continued

- Suppose that there were some $g \in \mathcal{L}^{1}([0,1])$ such that

$$
\varphi(f)=\varphi_{g}(f)=\int_{0}^{1} f(x) g(x) d x \quad \text { for all } f \in L^{\infty}([0,1])
$$

- Let $f_{n} \in C([0,1])$ be the function with graph

- But $f_{n} g \rightarrow 0$ almost everywhere and $\left|f_{n} g\right| \leq g \in \mathcal{L}^{1}([0,1])$. Hence

$$
\varphi\left(f_{n}\right)=\int_{0}^{1} f_{n} g d x \rightarrow 0
$$

by the LDCT. But $\varphi\left(f_{n}\right)=1$ for all $n$. Hence no such $g$ can exist.

## $p=1$

We want to consider the map $g \mapsto \varphi_{g}$ from $L^{\infty}(X)$ to $L^{1}(X)^{*}$.

## Remark (Injectivity)

If $\mu$ is semifinite, we proved this map was isometric, and hence injective. If $\mu$ is not semifinite, then there is a $F \in \mathcal{M}$ such that $\mu(F)=\infty$ and such that $F$ has no subsets of strictly positive finite measure. Note that $\left\|\mathbb{1}_{F}\right\|_{\infty}=1$. Consider $\varphi=\varphi_{\mathbb{1}_{F}}$. If $E \in \mathcal{M}$ has finite measure, then $\varphi\left(\mathbb{1}_{E}\right)=\int_{X} \mathbb{1}_{E} \cdot \mathbb{1}_{F} d \mu=\mu(E \cap F)=0$. Therefore $\varphi(f)=0$ for any integrable simple function. Since integrable simple functions are dense in $L^{1}(X), \varphi=0$. Thus $g \mapsto \varphi_{g}$ is injective if and only if $\mu$ is semifinite.

## Surjectivity

## Remark (Surjectivity)

We proved that $g \mapsto \varphi_{g}$ is surjective from $L^{\infty}(X)$ to $L^{1}(X)^{*}$ if $\mu$ is $\sigma$-finite. This can fail if $\mu$ is not $\sigma$-finite. Let $\nu$ be counting measure on ( $\mathbf{R}, \mathcal{P}(\mathbf{R})$ ). Let $\mathcal{M}=\left\{E \subset \mathbf{R}\right.$ : either $E$ or $E^{C}$ is countable $\}$. Let $\mu$ be the restriction of $\nu$ to $\mathcal{M}$. Then both $\mu$ and $\nu$ are semifinite measures that are not $\sigma$-finite. If $f \in \mathcal{L}^{1}(\nu)=L^{1}(\nu)$, then $f$ vanishes off a countable set. Thus $f$ is $\mathcal{M}$-measurable since $f^{-1}(V)$ is either countable or co-countable for any open set $V \subset \mathbf{C}$ (depending on whether or not $0 \in V$ ). Thus $L^{1}(\nu)=L^{1}(\mu)$. Clearly, $L^{\infty}(\nu)$ is the set $\ell^{\infty}(\mathbf{R})$ of all bounded functions on $\mathbf{R}$. Since $\mathcal{M}$-measurable functions are constant off a countable set, $L^{\infty}(\mu)$ is the proper subset of $L^{\infty}(\nu)$ of bounded functions which are constant off a countable set. Since $\nu$ is semifinite, $g \mapsto \varphi_{g}$ is an injection of $L^{\infty}(\nu)$ into $L^{1}(\nu)^{*}=L^{1}(\mu)^{*}$. Therefore $g \mapsto \varphi_{g}$ is not a surjection of $L^{\infty}(\mu) \subsetneq L^{\infty}(\nu)$ onto $L^{1}(\mu)^{*}$.

## Break Time

- Definitely time for a break.
- Questions?
- Start recording again.


## Lemma

Let $(\mathbf{R}, \mathcal{L}, m)$ be Lebesgue measure. If $E \in \mathcal{L}$ and $y \in \mathbf{R} \backslash\{0\}$, then let

$$
E+s=\{r+s: r \in E\} \quad \text { and } \quad s E=\{s r: r \in E\} .
$$

Then for all $s \in \mathbf{R}, E+s$ and $s E$ are in $\mathcal{L}$. Furthermore, $m(E+s)=m(E)$ and $m(s E)=|s| m(E)$.

## Proof.

We proved the translation Invariance back in Lecture 16. The statements about dilations are proved similarly.

## Integral forumlas

## Lemma

Suppose that $f \in \mathcal{L}^{1}(\mathbf{R})$ and $s \in \mathbf{R} \backslash\{0\}$. Then

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(r-s) d m(r) & =\int_{-\infty}^{\infty} f(r) d m(r) \quad \text { and } \\
\int_{-\infty}^{\infty} f(s r) d m(r) & =|s| \int_{-\infty}^{\infty} f(r) d m(r)
\end{aligned}
$$

## Proof.

If $E \in \mathcal{L}$, then $m(E+y)=m(E)$ and

$$
\int_{-\infty}^{\infty} \mathbb{1}_{E}(r-s) d m(r)=\int_{-\infty}^{\infty} \mathbb{1}_{E+s}(r) d m(r)=\int_{-\infty}^{\infty} \mathbb{1}_{E}(r) d m(r) .
$$

Hence the first formula holds if $f$ is a simple function. But there are simple functions $f_{n} \rightarrow f$ pointwise with $\left|f_{n}\right| \leq|f| \in \mathcal{L}^{1}(\mathbf{R})$. Hence the equation holds for all $f \in \mathcal{L}^{1}(\mathbf{R})$ by the LDCT. The second equation is proved similarly.

## Definition

Let $(\mathbf{R}, \mathcal{L}, m)$ be Lebesgue measure on the real line. Then the completion $\left(\mathbf{R} \times \mathbf{R}, \mathcal{L}^{2}, m^{2}\right)$ of $(\mathbf{R} \times \mathbf{R}, \mathcal{L} \otimes \mathcal{L}, m \times m)$ is called Lebesgue measure on $\mathbf{R}^{2}$.

## Remark

In a different course, we would introduce Lebesgue measure on $\mathbf{R}^{n}$, but there are some technicalities that I'd sooner avoid here as we bring this course to a close. But we should at least observe that since $\mathcal{B}(\mathbf{R} \times \mathbf{R})=\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$ (by HW\#46), $\mathcal{B}(\mathbf{R} \times \mathbf{R}) \subset \mathcal{L} \otimes \mathcal{L} \subset \mathcal{L}^{2}$, so continuous functions and even Borel functions on $\mathbf{R}^{2}$ are $\mathcal{L}^{2}$-measurable. But some subtleties remain.

## Composition

## Lemma

Suppose that $f: \mathbf{R} \rightarrow \mathbf{C}$ is $\mathcal{L}$-measurable. Then

$$
k(r, s)=f(s-r)
$$

is $\mathcal{L}^{2}$-measurable on $\mathbf{R}^{2}$.

## Remark (Not Obvious)

If we had been reasonable-and started with a Borel function $f: \mathbf{R} \rightarrow \mathbf{C}$-then the composition of $f$ with a continuous function $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such as $g(r, s)=s-r$ would be Borel, and hence $\mathcal{L}^{2}$-measurable. But as $f$ is only $\mathcal{L}$-measurable, the composition of $f$ with even a continuous function need not be measurable. (I gave such an example in the optional write up of the Cantor-Lebesgue function.) However, we've established that the composition of a Borel function with a $\mathcal{L}$-measurable function, such as $f$, is measurable.

## Proof

## Proof.

Let $g$ be a Borel function such that $g=f$ almost everywhere. Then there is a Borel null set $N$ such that $f(r)=g(r)$ if $r \notin N$. Let $k^{\prime}(r, s)=g(s-r)$. Then $k^{\prime}$ is Borel and hence $\mathcal{L}^{2}$-measurable.
Furthermore, $k(r, s)=k^{\prime}(r, s)$ provided

$$
(r, s) \notin D=\{(r, s): s-r \in N\}
$$

Since $m^{2}$ is complete, it will suffice to see that $D$ is a $m^{2}$-null set. But our Tonelli Theorem for complete measures implies

$$
m^{2}(D)=\int_{\mathbf{R}^{2}} \mathbb{1}_{D}(r, s) d m^{2}(r, s)=\int_{-\infty}^{\infty} m\left(D_{r}\right) d m(r)
$$

Since $D_{r}=\{s: s-r \in N\}=N+r . m\left(D_{r}\right)=0$ for all $r$.

## Convolution

## Definition

Suppose that $f$ and $g$ are Lebesgue measurable. Then their convolution $f * g$ is defined at $s \in \mathbf{R}$ whenever $r \mapsto f(r) g(s-r)$ is integrable, and then

$$
f * g(s)=\int_{-\infty}^{\infty} f(r) g(s-r) d m(r)
$$

If the convolution is defined almost everywhere, then we view $f * g$ as a function on all of $\mathbf{R}$ by defining $f * g(s)=0$ if $r \mapsto f(r) g(s-r)$ is not integrable.

## A Product on $L^{1}(\mathbf{R})$

## Theorem

If $f, g \in \mathcal{L}^{1}(\mathbf{R})$, then $f * g$ is defined almost everywhere and

$$
\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}
$$

In particular, the class of $f * g$ in $L^{1}(\mathbf{R})$ depends only on the classes of $f$ and $g$. Moreover, convolution induces a commutative and associative product on $L^{1}(\mathbf{R}):[f] *[g]:=[f * g]$.

## Proof.

Since $(r, s) \mapsto f(r) g(s-r)$ is $\mathcal{L}^{2}$-measurable, we can apply Tonelli's Theorem for Complete Measures. Thus there is a null set $N$ such that

$$
s \mapsto|f(r) g(s-r)|
$$

is measurable for all $r \notin N$.

## Proof

## Proof Continued.

Furthermore

$$
\begin{aligned}
\int_{\mathbf{R}^{2}}|f(r) g(s-r)| & d m^{2}(r, s)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(r) g(s-r)| d m(s) d m(r) \\
& =\int_{-\infty}^{\infty}|f(r)| \int_{-\infty}^{\infty}|g(s-r)| d m(s) d m(r) \\
& =\|f\|_{1}\|g\|_{1}<\infty
\end{aligned}
$$

Therefore, $k(r, s)=f(r) g(s-r)$ is in $\mathcal{L}^{1}\left(\mathbf{R}^{2}\right)$. Now by Fubini's Theorem, $r \mapsto f(r) g(s-r)$ is integrable for almost all $s$ ! Thus $f * g$ is defined almost everywhere, and $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$.

## Proof

## Proof Continued.

Note that if $f \sim f^{\prime}$, then $f * g-f^{\prime} * g=\left(f-f^{\prime}\right) * g$. Since $\left\|\left(f-f^{\prime}\right) * g\right\|_{1}=0$, we have $f * g=f^{\prime} * g$ in $L^{1}(\mathbf{R})$. Similarly, if $g \sim g^{\prime}$, we have $[f * g]=\left[f * g^{\prime}\right]$. Hence we can view convolution as a binary operation on $L^{1}(\mathbf{R})$.

Also

$$
\begin{aligned}
f * g(s) & =\int_{-\infty}^{\infty} f(r) g(s-r) d m(r)=\int_{-\infty}^{\infty} f(r+s) g(-r) d m(r) \\
& =\int_{-\infty}^{\infty} f(-r+s) g(r) d m(r)=g * f(s)
\end{aligned}
$$

Thus convolution is commutative.

## Proof

## Proof Continued.

Associativity requires Fubini. I'll just sketch the details.

$$
\begin{aligned}
f *(g * h)(s) & =\int_{-\infty}^{\infty} f(r) g * h(s-r) d r \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r) g(t) h(s-r-t) d t d r \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \underbrace{f(r) g(t-r) h(s-t)}_{k_{s}(t, r)} d t d r \\
& \stackrel{\text { Fubini }}{=} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r) g(t-r) h(s-t) d r d t \\
& =\int_{-\infty}^{\infty} f * g(t) h(s-t) d t \\
& =(f * g) * h(s)
\end{aligned}
$$

## Break Time

- Definitely time for a break.
- Questions?
- Start recording again.
(1) If $f: \mathbf{R} \rightarrow \mathbf{C}$ is measurable, let $\lambda(s) f(r)=f(r-s)$.
(2) Since $(\lambda(s) f)^{-1}(V)=f^{-1}(V)+s, \lambda(s) f: \mathbf{R} \rightarrow \mathbf{C}$ is measurable.
(3) If $f \in \mathcal{L}^{p}(\mathbf{R})$, then $\|\lambda(s) f\|_{p}=\|f\|_{p}$.
(9) Since $\lambda(s): \mathcal{L}^{p}(\mathbf{R}) \rightarrow \mathcal{L}^{p}(\mathbf{R})$ is linear, it follows from (3) that $\lambda(s)$ extends to a linear isometry of $L^{p}(\mathbf{R})$ to itself.


## Continuity

## Lemma

Suppose $1 \leq p<\infty$. For each $f \in \mathcal{L}^{p}(\mathbf{R})$, the map $s \mapsto \lambda(s) f$ is continuous from $\mathbf{R}$ to $L^{p}(\mathbf{R})$.

## Sketch of the Proof.

If $f \in C_{c}(\mathbf{R})$, then $f$ is uniformly continuous and the result is straightforward. Let $f \in \mathcal{L}^{p}(\mathbf{R}), r \in \mathbf{R}$, and fix $\epsilon>0$. By HW, there is a $g \in C_{c}(\mathbf{R})$ such that $\|f-g\|_{p}<\epsilon / 3$. Let $\delta>0$ be such that $|s-r|<\delta$ implies $\|\lambda(s) g-\lambda(r) g\|_{p}<\epsilon / 3$. Then if $|s-r|<\delta$, we have

$$
\begin{aligned}
&\|\lambda(s) f-\lambda(r) f\|_{p} \leq\|\lambda(s) f-\lambda(s) g\|_{p}+\|\lambda(s) g-\lambda(r) g\|_{p} \\
&+\|\lambda(r) g-\lambda(r) f\|_{p} \\
&=\|f-g\|_{p}+\|\lambda(s) g-\lambda(r) g\|_{p}+\|g-f\|_{p} \\
&< \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

## $L^{p} * L^{q}$

## Notation

If $g: \mathbf{R} \rightarrow \mathbf{C}$ is a function, then we let $\tilde{g}(r)=g(-r)$. Then

$$
\begin{align*}
f * g(s) & =\int_{-\infty}^{\infty} f(r) g(s-r) d m(r) \\
& =\int_{-\infty}^{\infty} f(r) \lambda(s) \tilde{g}(r) d m(r) . \tag{1}
\end{align*}
$$

## Lemma

Suppose $\frac{1}{p}+\frac{1}{q}=1$. If $f \in \mathcal{L}^{p}(\mathbf{R})$ and $g \in \mathcal{L}^{q}(\mathbf{R})$, then $f * g$ is defined everywhere and $f * g: \mathbf{R} \rightarrow \mathbf{C}$ is continuous.

## Proof.

Since $r \mapsto f(r)$ is in $\mathcal{L}^{p}(\mathbf{R})$ while $r \mapsto \lambda(s) \tilde{g}(r)$ is in $\mathcal{L}^{q}(\mathbf{R})$ for each $s \in \mathbf{R}, r \mapsto f(r) \lambda(s) \tilde{g}(r)$ is in $\mathcal{L}^{1}(\mathbf{R})$ for each $s$ by Hölder. Therefore $f * g(s)$ is always defined in view of (1).

## Proof

## Proof Continued.

Since $f * g=g * f$, we can assume $q \neq \infty$. Again using (1).

$$
\begin{aligned}
f * g(s)-f * g(r) & =\int_{-\infty}^{\infty} f(t)(\lambda(s) \tilde{g}(t)-\lambda(r) \tilde{g}(t)) d m(t) \\
& \leq\|f\|_{p}\|\lambda(s) \tilde{g}-\lambda(r) \tilde{g}\|_{q}
\end{aligned}
$$

Now the result follows from the continuity of $r \mapsto \lambda(r) \tilde{g}$.

## A Fun Corollary

## Lemma

Suppose $E \subset \mathbf{R}$ is such that $m(E)>0$. Then

$$
E-E=\{x-y: x, y \in E\}
$$

contains an open interval about 0 .

## Proof.

We can assume $0<m(E)<\infty$. Hence $\mathbb{1}_{E} \in \mathcal{L}^{1}(\mathbf{R})$ and $\mathbb{1}_{-E} \in \mathcal{L}^{\infty}(\mathbf{R})$. Thus $f(s)=\mathbb{1}_{E} * \mathbb{1}_{-E}(s)$ is continuous. But

$$
f(s)=\int_{-\infty}^{\infty} \mathbb{1}_{E}(r) \mathbb{1}_{E}(r-s) d m(r)
$$

Hence $f(0)=m(E)>0$ and $f(s)=0$ if $s \notin E-E$.

- That is enough for now.
- In fact, that is really enough for Math 73/103.
- We will talk about a different approach to defining measures-using linear functionals-on Monday.
- Monday's lecture "will not be on the exam".

