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Getting Started

@ We should be recording!

@ Questions?
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Review of Duality for £P

Let (X, M, 1) be a measure space. We showed that if 1 < p < oo,
then g — g is a isometric Banach space isomorphism of L9(X)
onto LP(X)* where

pg(f) := /X f(x)g(x)du(x) forall f € LP(X).

If p= 0o, then g — ¢4 is an isometric injection of L1(X) into
L>°(X)*, but this map never surjective except for trivial special
cases.
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An Example

Example (Where g — ¢, is not onto L*°(X))

o Let X =[0,1] and let = m be Lebesgue measure.

@ Then we can view C([0,1]) as a subspace of L>°([0,1]): the
map f € C([0,1]) — [f] € L*°([0,1]) is an isometric linear
map.

@ The map f — f(0) is a bounded linear functional on C([0, 1]).
In fact, this functional has norm 1.

@ In Math 113, we will learn that every bounded linear
functional on a subspace M of a normed vector space V has a
norm preserving extension to the whole vector space V. This
is called the Hahn-Banach Theorem.

@ This means there must be a ¢ € L*°([0,1])* such that
o(f) = £(0) for all f € C([0,1]).
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Example Continued

@ Suppose that there were some g € £1([0,1]) such that
1
o(f) = pg(f) = / f(x)g(x)dx for all f € L*([0,1]).
0
o Let f, € C([0,1]) be the function with graph
| L
11

e But f,g — 0 almost everywhere and |f,g| < g € £1([0, 1]).
Hence

1
go(f,,):/ fng dx — 0
0

by the LDCT. But ¢(f,) =1 for all n. Hence no such g can
exist.
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p=1

We want to consider the map g — @z from L>(X) to L}(X)*.

Remark (Injectivity)

If v is semifinite, we proved this map was isometric, and hence
injective. If u is not semifinite, then there is a F € M such that
wu(F) = oo and such that F has no subsets of strictly positive finite
measure. Note that HIFHOo = 1. Consider p = p1,. If E € M has
finite measure, then p(1g) = [y 1 - 1pdp= pw(ENF) =0.
Therefore ¢(f) = 0 for any integrable simple function. Since
integrable simple functions are dense in [*(X), ¢ = 0. Thus

g — g is injective if and only if u is semifinite.
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Surjectivity

Remark (Surjectivity)

We proved that g — g is surjective from L>®(X) to LY(X)* if u is
o-finite. This can fail if u is not o-finite. Let v be counting
measure on (R, P(R)). Let

M = { E C R : either E or EC is countable}. Let i1 be the
restriction of v to M. Then both p and v are semifinite measures
that are not o-finite. If f € L1(v) = L*(v), then f vanishes off a
countable set. Thus f is M-measurable since f~1(V) is either
countable or co-countable for any open set V C C (depending on
whether or not 0 € V). Thus L(v) = LY(u). Clearly, L>(v) is the
set >°(R) of all bounded functions on R. Since M-measurable
functions are constant off a countable set, L*°(u) is the proper
subset of L>°(v) of bounded functions which are constant off a
countable set. Since v is semifinite, g — g is an injection of
L>=(v) into LX(v)* = LY(u)*. Therefore g — g is not a surjection
of L®(u) € L>=(v) onto L*(u)*.
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@ Definitely time for a break.
@ Questions?

@ Start recording again.
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Lemma

Let (R, L, m) be Lebesgue measure. If E € L and y € R\ {0},
then let

~
—
—~~
| z
~

E+s={r+s:reE} and sE={sr:rekE}.

Then for all s € R, E + s and sE are in L. Furthermore,
m(E +s) = m(E) and m(sE) = |s|m(E).

We proved the translation Invariance back in Lecture 16. The
statements about dilations are proved similarly. [
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Integral forumlas

Suppose that f € L1(R) and s € R\ {0}. Then

| fe=syant) = [ fr)am(r) ana

— 00

[ fryamin) = '5'7:2 7(r) dm(1).

— 00

If E € L, then m(E + y) = m(E) and

| tetr=s)am) = [~ tetryam(n) = [ 1e(r)dm(o),

Hence the first formula holds if 7 is a simple function. But there are
simple functions f, — f pointwise with |f,| < |f| € L}(R). Hence the
equation holds for all f € £1(R) by the LDCT. The second equation is
proved similarly. O
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Let (R, £, m) be Lebesgue measure on the real line. Then the
completion (R x R, £?, m?) of (R x R, L ® L, mxm) is called
Lebesgue measure on R?.

In a different course, we would introduce Lebesgue measure on R”,
but there are some technicalities that I'd sooner avoid here as we
bring this course to a close. But we should at least observe that
since B(R x R) = B(R) ® B(R) (by HW#46),

B(R x R) C L® L C L?, so continuous functions and even Borel
functions on R? are £2-measurable. But some subtleties remain.
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Suppose that f : R — C is L-measurable. Then
k(r,s)=1f(s—r)

is £L2-measurable on RZ.

Remark (Not Obvious)

If we had been reasonable—and started with a Borel function

f : R — C—then the composition of f with a continuous function
g :R?> = R such as g(r,s) = s — r would be Borel, and hence
L?-measurable. But as f is only £L-measurable, the composition of
f with even a continuous function need not be measurable. (I gave
such an example in the optional write up of the Cantor-Lebesgue
function.) However, we've established that the composition of a
Borel function with a L-measurable function, such as f, is
measurable.
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Proof

Proof.

Let g be a Borel function such that g = f almost everywhere.
Then there is a Borel null set N such that f(r) = g(r) if r ¢ N.
Let k'(r,s) = g(s —r). Then k' is Borel and hence £2-measurable.
Furthermore, k(r,s) = k'(r,s) provided

(r,s)¢ D={(r,s):s—reN}.

Since m? is complete, it will suffice to see that D is a m?-null set.

But our Tonelli Theorem for complete measures implies

m2(D):/ 1D(r,s)dm2(r,s):/ m(D,) dm(r).
R2 o
Since D, ={s:s—reN}=N+r. m(D,) =0 for all r. O
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Convolution

Definition

Suppose that f and g are Lebesgue measurable. Then their
convolution f x g is defined at s € R whenever r — f(r)g(s —r) is
integrable, and then

fxg(s)= / f(r)g(s—r)dm(r).
If the convolution is defined almost everywhere, then we view f * g
as a function on all of R by defining f * g(s) = 0 if

r— f(r)g(s — r) is not integrable.
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A Product on L!(R)

If f,g € LY(R), then f x g is defined almost everywhere and
I« gl < [Ifll1llglls-

In particular, the class of f x g in L*(R) depends only on the
classes of f and g. Moreover, convolution induces a commutative
and associative product on L*(R): [f] x [g] := [f * g].

Since (r,s) + f(r)g(s — r) is £?-measurable, we can apply
Tonelli's Theorem for Complete Measures. Thus there is a null set
N such that

s |f(r)g(s —r)|

is measurable for all r ¢ N.
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Proof

Proof Continued

Furthermore

[ 1FO)e(s = dmi(ris) = [ [ 1£(r)e(s = )] dm(s) (s

=/ |/ g(s — )| dm(s) dm(r)

= lIfllllgllx < oo.

Therefore, k(r,s) = f(r)g(s — r) is in £L}(R?). Now by Fubini's
Theorem, r — f(r)g(s — r) is integrable for almost all s! Thus
f x g is defined almost everywhere, and ||f * g||1 < ||f||1lg]l1-
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Proof

Proof Continued.

Note that if f ~ f’, then f x g — ' x g = (f — f') x g. Since

|(f — ') x g|l1 = 0, we have f x g = f' x g in L}(R). Similarly, if
g ~ g', we have [f x g] = [f * g']. Hence we can view convolution
as a binary operation on L!(R).

Also

o0

Frg(s)= [ (s ndm(r) = [ f(r+ s)g(-r) dm(r)

—00 —00

= /oo f(—r+s)g(r)dm(r) = g = f(s).

—0o0

Thus convolution is commutative.
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Proof
Proof Continued.

Associativity requires Fubini. I'll just sketch the details.

oo

f(r)g  h(s—r)dr

/ f(r)g(t)h(s — r —t) dtdr
.

fx(g=*h)(s)=

83
88 8

Il
\88\\

f(r)g(t—r)h(s —t) dtdr

ks(t,r)

Fubini / / g(t — r)h(s — t) dr dt

/_ fxg(t)h(s—t)dt

= (f x g) * h(s). O

8
8
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@ Definitely time for a break.
@ Questions?

@ Start recording again.
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Translation

Q If f : R — C is measurable, let X\(s)f(r) = f(r —s).

@ Since (\(s)f) Y (V) =Ff"HV)+s, As)f :R—Cis
measurable.

Q If f € LP(R), then [|A(s)fl, = ||f,-

Q Since A(s) : LP(R) — LP(R) is linear, it follows from (3) that
A(s) extends to a linear isometry of LP(R) to itself.
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Continuity

Lemma

Suppose 1 < p < co. For each f € LP(R), the map s — A(s)f is
continuous from R to LP(R).

Sketch of the Proof.

If f € Cc(R), then f is uniformly continuous and the result is
straightforward. Let f € LP(R), r € R, and fix e > 0. By HW,
there is a g € C.(R) such that ||f — g|, < ¢/3. Let 6 > 0 be such
that |s — r| < 6 implies ||[A(s)g — A(r)gllp < €/3. Then if

|s —r| <9, we have

IA(S)E = A(N)Fllp < [IA(s)f = A(s)gllp + IA(s)g — Alr)ellp
+IA()g = ANfllp
= If —&llp + IA(s)g — Alr)zllp + llg — I

€ € €
S 44— ]
<3+3+3 €
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LPx L9

If g : R — C is a function, then we let g(r) = g(—r). Then

fxg(s)= /oo f(r)g(s—r)dm(r)

—0O0

_ / AR dm). (@)

—00

Lemma

Suppose % + % =1. Iff € LP(R) and g € LI(R), then f x g is
defined everywhere and f x g : R — C is continuous.

Since r — f(r) is in LP(R) while r — A(s)g(r) is in LI(R) for
each s € R, r > f(r)A(s)&(r) is in L}(R) for each s by Holder.
Therefore f % g(s) is always defined in view of (1).
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Proof

Proof Continued.

Since f x g = g * f, we can assume g # co. Again using (1).

fxg(s)—fx*xg(r)= /OO () (A(s)g(t) - /\(r)g(t)) dm(t)

< [IfllplIA(s)& — A(r)Ellq-

Now the result follows from the continuity of r — \(r)g. O
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A Fun Corollary

Suppose E C R is such that m(E) > 0. Then

E—E={x—y:x,y€E}

contains an open interval about 0.

We can assume 0 < m(E) < co. Hence 1¢ € £}(R) and
1 g€ L°R). Thus f(s) = 1g * 1_g(s) is continuous. But

F(s) = /OO 1e(r)1e(r — 5) dm(r).

— 00

Hence f(0) = m(E) >0 and f(s) =0ifs¢ E — E. N
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That's Enough for Today

@ That is enough for now.
e In fact, that is really enough for Math 73/103.

@ We will talk about a different approach to defining
measures—using linear functionals—on Monday.

@ Monday's lecture “will not be on the exam”.
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