Math 73/103: Fall 2020 Lecture 27

Dana P. Williams

Dartmouth College

Friday, November 13, 2020

- We should be recording!
- Questions?

Remark

Let (X, \mathcal{M}, μ) be a measure space. We showed that if 1 , $then <math>g \mapsto \varphi_g$ is a isometric Banach space isomorphism of $L^q(X)$ onto $L^p(X)^*$ where

$$arphi_{\mathsf{g}}(f) := \int_X f(x) g(x) \, d\mu(x) \quad \text{for all } f \in \mathcal{L}^p(X).$$

Remark

If $p = \infty$, then $g \mapsto \varphi_g$ is an isometric injection of $L^1(X)$ into $L^{\infty}(X)^*$, but this map never surjective except for trivial special cases.

Example (Where $g \mapsto \varphi_g$ is not onto $L^{\infty}(X)$)

- Let X = [0, 1] and let $\mu = m$ be Lebesgue measure.
- Then we can view C([0,1]) as a subspace of L[∞]([0,1]): the map f ∈ C([0,1]) → [f] ∈ L[∞]([0,1]) is an isometric linear map.
- The map $f \mapsto f(0)$ is a bounded linear functional on C([0, 1]). In fact, this functional has norm 1.
- In Math 113, we will learn that every bounded linear functional on a subspace *M* of a normed vector space *V* has a norm preserving extension to the whole vector space *V*. This is called the Hahn-Banach Theorem.
- This means there must be a $\varphi \in L^{\infty}([0, 1])^*$ such that $\varphi(f) = f(0)$ for all $f \in C([0, 1])$.

Example Continued

• Suppose that there were some $g \in \mathcal{L}^1([0,1])$ such that

$$\varphi(f) = \varphi_g(f) = \int_0^1 f(x)g(x) dx$$
 for all $f \in L^\infty([0,1])$.

• Let $f_n \in C([0,1])$ be the function with graph

• But $f_ng \to 0$ almost everywhere and $|f_ng| \leq g \in \mathcal{L}^1([0,1])$. Hence

$$\varphi(f_n)=\int_0^1 f_ng\ dx\to 0$$

by the LDCT. But $\varphi(f_n) = 1$ for all *n*. Hence no such *g* can exist.

We want to consider the map $g \mapsto \varphi_g$ from $L^{\infty}(X)$ to $L^1(X)^*$.

Remark (Injectivity)

If μ is semifinite, we proved this map was isometric, and hence injective. If μ is not semifinite, then there is a $F \in \mathcal{M}$ such that $\mu(F) = \infty$ and such that F has no subsets of strictly positive finite measure. Note that $\|\mathbb{1}_F\|_{\infty} = 1$. Consider $\varphi = \varphi_{\mathbb{1}_F}$. If $E \in \mathcal{M}$ has finite measure, then $\varphi(\mathbb{1}_E) = \int_X \mathbb{1}_E \cdot \mathbb{1}_F d\mu = \mu(E \cap F) = 0$. Therefore $\varphi(f) = 0$ for any integrable simple function. Since integrable simple functions are dense in $L^1(X)$, $\varphi = 0$. Thus $g \mapsto \varphi_g$ is injective if and only if μ is semifinite.

Remark (Surjectivity)

We proved that $g \mapsto \varphi_g$ is surjective from $L^{\infty}(X)$ to $L^1(X)^*$ if μ is σ -finite. This can fail if μ is not σ -finite. Let ν be counting measure on $(\mathbf{R}, \mathcal{P}(\mathbf{R}))$. Let $\mathcal{M} = \{ E \subset \mathbf{R} : either E \text{ or } E^{C} \text{ is countable} \}.$ Let μ be the restriction of ν to \mathcal{M} . Then both μ and ν are semifinite measures that are not σ -finite. If $f \in \mathcal{L}^1(\nu) = L^1(\nu)$, then f vanishes off a countable set. Thus f is \mathcal{M} -measurable since $f^{-1}(V)$ is either countable or co-countable for any open set $V \subset \mathbf{C}$ (depending on whether or not $0 \in V$). Thus $L^1(\nu) = L^1(\mu)$. Clearly, $L^{\infty}(\nu)$ is the set $\ell^{\infty}(\mathbf{R})$ of all bounded functions on **R**. Since \mathcal{M} -measurable functions are constant off a countable set, $L^{\infty}(\mu)$ is the proper subset of $L^{\infty}(\nu)$ of bounded functions which are constant off a countable set. Since ν is semifinite, $g \mapsto \varphi_{g}$ is an injection of $L^{\infty}(\nu)$ into $L^{1}(\nu)^{*} = L^{1}(\mu)^{*}$. Therefore $g \mapsto \varphi_{g}$ is not a surjection of $L^{\infty}(\mu) \subsetneq L^{\infty}(\nu)$ onto $L^{1}(\mu)^{*}$.

- Definitely time for a break.
- Questions?
- Start recording again.

Lemma

Let $(\mathbf{R}, \mathcal{L}, m)$ be Lebesgue measure. If $E \in \mathcal{L}$ and $y \in \mathbf{R} \setminus \{0\}$, then let

$$E + s = \{ r + s : r \in E \}$$
 and $sE = \{ sr : r \in E \}.$

Then for all $s \in \mathbf{R}$, E + s and sE are in \mathcal{L} . Furthermore, m(E + s) = m(E) and m(sE) = |s|m(E).

Proof.

We proved the translation Invariance back in Lecture 16. The statements about dilations are proved similarly.

Integral forumlas

Lemma

Suppose that $f \in \mathcal{L}^1(\mathbf{R})$ and $s \in \mathbf{R} \setminus \{0\}$. Then

$$\int_{-\infty}^{\infty} f(r-s) dm(r) = \int_{-\infty}^{\infty} f(r) dm(r) \text{ and}$$
$$\int_{-\infty}^{\infty} f(sr) dm(r) = |s| \int_{-\infty}^{\infty} f(r) dm(r).$$

Proof.

If
$$E \in \mathcal{L}$$
, then $m(E + y) = m(E)$ and

$$\int_{-\infty}^{\infty} \mathbb{1}_{E}(r-s) \, dm(r) = \int_{-\infty}^{\infty} \mathbb{1}_{E+s}(r) \, dm(r) = \int_{-\infty}^{\infty} \mathbb{1}_{E}(r) \, dm(r).$$

Hence the first formula holds if f is a simple function. But there are simple functions $f_n \to f$ pointwise with $|f_n| \leq |f| \in \mathcal{L}^1(\mathbf{R})$. Hence the equation holds for all $f \in \mathcal{L}^1(\mathbf{R})$ by the LDCT. The second equation is proved similarly.

Definition

Let $(\mathbf{R}, \mathcal{L}, m)$ be Lebesgue measure on the real line. Then the completion $(\mathbf{R} \times \mathbf{R}, \mathcal{L}^2, m^2)$ of $(\mathbf{R} \times \mathbf{R}, \mathcal{L} \otimes \mathcal{L}, m \times m)$ is called Lebesgue measure on \mathbf{R}^2 .

Remark

In a different course, we would introduce Lebesgue measure on \mathbb{R}^n , but there are some technicalities that I'd sooner avoid here as we bring this course to a close. But we should at least observe that since $\mathcal{B}(\mathbb{R} \times \mathbb{R}) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ (by HW#46), $\mathcal{B}(\mathbb{R} \times \mathbb{R}) \subset \mathcal{L} \otimes \mathcal{L} \subset \mathcal{L}^2$, so continuous functions and even Borel functions on \mathbb{R}^2 are \mathcal{L}^2 -measurable. But some subtleties remain.

Composition

Lemma

Suppose that $f : \mathbf{R} \to \mathbf{C}$ is \mathcal{L} -measurable. Then

$$k(r,s)=f(s-r)$$

is \mathcal{L}^2 -measurable on \mathbf{R}^2 .

Remark (Not Obvious)

If we had been reasonable—and started with a Borel function $f : \mathbf{R} \to \mathbf{C}$ —then the composition of f with a continuous function $g : \mathbf{R}^2 \to \mathbf{R}$ such as g(r, s) = s - r would be Borel, and hence \mathcal{L}^2 -measurable. But as f is only \mathcal{L} -measurable, the composition of f with even a continuous function need not be measurable. (I gave such an example in the optional write up of the Cantor-Lebesgue function.) However, we've established that the composition of a Borel function with a \mathcal{L} -measurable function, such as f, is measurable.

Proof.

Let g be a Borel function such that g = f almost everywhere. Then there is a Borel null set N such that f(r) = g(r) if $r \notin N$. Let k'(r, s) = g(s - r). Then k' is Borel and hence \mathcal{L}^2 -measurable. Furthermore, k(r, s) = k'(r, s) provided

$$(r,s) \notin D = \{(r,s) : s - r \in N\}.$$

Since m^2 is complete, it will suffice to see that D is a m^2 -null set. But our Tonelli Theorem for complete measures implies

$$m^{2}(D) = \int_{\mathbf{R}^{2}} \mathbb{1}_{D}(r, s) \, dm^{2}(r, s) = \int_{-\infty}^{\infty} m(D_{r}) \, dm(r).$$

Since $D_{r} = \{ s : s - r \in N \} = N + r$. $m(D_{r}) = 0$ for all r .

Definition

Suppose that f and g are Lebesgue measurable. Then their convolution f * g is defined at $s \in \mathbf{R}$ whenever $r \mapsto f(r)g(s-r)$ is integrable, and then

$$f * g(s) = \int_{-\infty}^{\infty} f(r)g(s-r) dm(r).$$

If the convolution is defined almost everywhere, then we view f * g as a function on all of **R** by defining f * g(s) = 0 if $r \mapsto f(r)g(s - r)$ is not integrable.

A Product on $L^1(\mathbf{R})$

Theorem

If $f,g \in \mathcal{L}^1(\mathbf{R})$, then f * g is defined almost everywhere and

 $\|f * g\|_1 \le \|f\|_1 \|g\|_1.$

In particular, the class of f * g in $L^1(\mathbf{R})$ depends only on the classes of f and g. Moreover, convolution induces a commutative and associative product on $L^1(\mathbf{R})$: [f] * [g] := [f * g].

Proof.

Since $(r, s) \mapsto f(r)g(s - r)$ is \mathcal{L}^2 -measurable, we can apply Tonelli's Theorem for Complete Measures. Thus there is a null set N such that

 $s\mapsto |f(r)g(s-r)|$

is measurable for all $r \notin N$.

Proof Continued.

Furthermore

$$\int_{\mathbf{R}^2} |f(r)g(s-r)| \, dm^2(r,s) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(r)g(s-r)| \, dm(s) \, dm(r)$$

$$= \int_{-\infty}^{\infty} |f(r)| \int_{-\infty}^{\infty} |g(s-r)| dm(s) dm(r)$$

= $\|f\|_1 \|g\|_1 < \infty.$

Therefore, k(r,s) = f(r)g(s-r) is in $\mathcal{L}^1(\mathbb{R}^2)$. Now by Fubini's Theorem, $r \mapsto f(r)g(s-r)$ is integrable for almost all s! Thus f * g is defined almost everywhere, and $||f * g||_1 \le ||f||_1 ||g||_1$.

Proof Continued.

Note that if $f \sim f'$, then f * g - f' * g = (f - f') * g. Since $\|(f - f') * g\|_1 = 0$, we have f * g = f' * g in $L^1(\mathbf{R})$. Similarly, if $g \sim g'$, we have [f * g] = [f * g']. Hence we can view convolution as a binary operation on $L^1(\mathbf{R})$.

Also

$$f * g(s) = \int_{-\infty}^{\infty} f(r)g(s-r) dm(r) = \int_{-\infty}^{\infty} f(r+s)g(-r) dm(r)$$
$$= \int_{-\infty}^{\infty} f(-r+s)g(r) dm(r) = g * f(s).$$

Thus convolution is commutative.

Proof

Proof Continued.

Associativity requires Fubini. I'll just sketch the details.

$$f * (g * h)(s) = \int_{-\infty}^{\infty} f(r)g * h(s - r) dr$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r)g(t)h(s - r - t) dt dr$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \underbrace{f(r)g(t - r)h(s - t)}_{k_{s}(t,r)} dt dr$$

Fubini $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r)g(t - r)h(s - t) dr dt$

$$= \int_{-\infty}^{\infty} f * g(t)h(s - t) dt$$

$$= (f * g) * h(s).$$

- Definitely time for a break.
- Questions?
- Start recording again.

- **1** If $f : \mathbf{R} \to \mathbf{C}$ is measurable, let $\lambda(s)f(r) = f(r-s)$.
- Since $(\lambda(s)f)^{-1}(V) = f^{-1}(V) + s$, $\lambda(s)f : \mathbf{R} \to \mathbf{C}$ is measurable.
- **3** If $f \in \mathcal{L}^p(\mathbf{R})$, then $\|\lambda(s)f\|_p = \|f\|_p$.
- Since λ(s) : L^p(**R**) → L^p(**R**) is linear, it follows from (3) that λ(s) extends to a linear isometry of L^p(**R**) to itself.

Lemma

Suppose $1 \le p < \infty$. For each $f \in \mathcal{L}^p(\mathbf{R})$, the map $s \mapsto \lambda(s)f$ is continuous from \mathbf{R} to $L^p(\mathbf{R})$.

Sketch of the Proof.

If $f \in C_c(\mathbf{R})$, then f is uniformly continuous and the result is straightforward. Let $f \in \mathcal{L}^p(\mathbf{R})$, $r \in \mathbf{R}$, and fix $\epsilon > 0$. By HW, there is a $g \in C_c(\mathbf{R})$ such that $||f - g||_p < \epsilon/3$. Let $\delta > 0$ be such that $||s - r| < \delta$ implies $||\lambda(s)g - \lambda(r)g||_p < \epsilon/3$. Then if $||s - r|| < \delta$, we have

$$\begin{split} \|\lambda(s)f - \lambda(r)f\|_{p} &\leq \|\lambda(s)f - \lambda(s)g\|_{p} + \|\lambda(s)g - \lambda(r)g\|_{p} \\ &+ \|\lambda(r)g - \lambda(r)f\|_{p} \\ &= \|f - g\|_{p} + \|\lambda(s)g - \lambda(r)g\|_{p} + \|g - f\|_{p} \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{split}$$

$L^p * L^q$

Notation

If $g : \mathbf{R} \to \mathbf{C}$ is a function, then we let $\tilde{g}(r) = g(-r)$. Then

$$f * g(s) = \int_{-\infty}^{\infty} f(r)g(s-r) dm(r)$$
$$= \int_{-\infty}^{\infty} f(r)\lambda(s)\tilde{g}(r) dm(r).$$
(1)

Lemma

Suppose $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in \mathcal{L}^{p}(\mathbf{R})$ and $g \in \mathcal{L}^{q}(\mathbf{R})$, then f * g is defined everywhere and $f * g : \mathbf{R} \to \mathbf{C}$ is continuous.

Proof.

Since $r \mapsto f(r)$ is in $\mathcal{L}^{p}(\mathbf{R})$ while $r \mapsto \lambda(s)\tilde{g}(r)$ is in $\mathcal{L}^{q}(\mathbf{R})$ for each $s \in \mathbf{R}$, $r \mapsto f(r)\lambda(s)\tilde{g}(r)$ is in $\mathcal{L}^{1}(\mathbf{R})$ for each s by Hölder. Therefore f * g(s) is always defined in view of (1).

Proof Continued.

Since f * g = g * f, we can assume $q \neq \infty$. Again using (1).

$$egin{aligned} f*g(s)-f*g(r)&=\int_{-\infty}^{\infty}f(t)ig(\lambda(s) ilde{g}(t)-\lambda(r) ilde{g}(t)ig)\,dm(t)\ &\leq \|f\|_p\|\lambda(s) ilde{g}-\lambda(r) ilde{g}\|_q. \end{aligned}$$

Now the result follows from the continuity of $r \mapsto \lambda(r)\tilde{g}$.

A Fun Corollary

Lemma

Suppose $E \subset \mathbf{R}$ is such that m(E) > 0. Then

$$E-E = \{x-y : x, y \in E\}$$

contains an open interval about 0.

Proof.

We can assume $0 < m(E) < \infty$. Hence $\mathbb{1}_E \in \mathcal{L}^1(\mathbf{R})$ and $\mathbb{1}_{-E} \in \mathcal{L}^{\infty}(\mathbf{R})$. Thus $f(s) = \mathbb{1}_E * \mathbb{1}_{-E}(s)$ is continuous. But

$$f(s) = \int_{-\infty}^{\infty} \mathbb{1}_{E}(r)\mathbb{1}_{E}(r-s)\,dm(r).$$

Hence f(0) = m(E) > 0 and f(s) = 0 if $s \notin E - E$.

- That is enough for now.
- In fact, that is really enough for Math 73/103.
- We will talk about a different approach to defining measures—using linear functionals—on Monday.
- Monday's lecture "will not be on the exam".