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Getting Started

We should be recording!

This a good time to ask questions about the previous lecture,
complain, or tell a story.

As I mentioned, I hope that you have the bandwidth to keep
your video on during the class meeting. This makes it seem a
little more “real” for me. But this is voluntary.

Gradescope may not work for us. My guess is that you will
be uploading your PDFs from canvas. More next week:
homework problems 1–10 will be due Wednesday in any case.
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A Few Repairs

Contrary to what I said in lecture one, the triangle inequality for a
metric ρ does not imply ρ(x , x) = 0 for all x . This needs to be
part of the axioms!

Definition (Corrected)

A metric on a set X is a function ρ : X ×X → [0,∞) such that for
all x , y , z ∈ X we have

1 [definiteness] ρ(x , y) = 0 if and only if x = y ,

2 [symmetry] ρ(x , y) = ρ(y , x) and

3 [triangle inequality] ρ(x , z) ≤ ρ(x , y) + ρ(y , z).

Then we call ρ a pusedo metric if item one is replaced by merely
ρ(x , x) = 0 for all x .

Dana P. Williams Math 73/103: Fall 2020 Lecture 3



Reverse Triangle Inequality

Lemma

Suppose that (X , ρ) is a metric space. Then for all x , y , z ∈ X, we
have ∣∣ρ(x , z)− ρ(x , y)

∣∣ ≤ ρ(z , y).

Proof.

By the triangle inequality, we have ρ(x , z) ≤ ρ(x , y) + ρ(y , z).
that is

ρ(x , z)− ρ(x , y) ≤ ρ(y , z) = ρ(z , y).

By symmetry,

ρ(x , y)− ρ(x , z) ≤ ρ(z , y).

The result follows.
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Nested Sets

Definition

A metric space has the nested set property if given a sequence (Fn)
of closed nonempty sets Fn such that Fn+1 ⊂ Fn for all n and such
that diam(Fn)→ 0, then there is a unique x ∈ X such that

∞⋂
n=1

Fn = { x }.

Theorem

A metric space X is complete if and only if it has the nested set
property.

Remark

Note that the word “nonempty” in the definition of the nested set
property is critical.
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Proof

Proof.

Suppose that X is complete and (Fn) are as in the statement of
the theorem. Pick xn ∈ Fn. Then if m ≥ n ≥ M, we have
xn, xm ∈ FM and

ρ(xn, xm) ≤ diam(FM).

Since diam(FM)→ 0, it follows that (xn) is Cauchy. Therefore
there is a x ∈ X such that xn → x . Since x = limn≥M xn, we have
x ∈ FM for all M ≥ 1. Hence x ∈

⋂
Fn. But if y ∈

⋂
Fn, then

ρ(x , y) ≤ diam(Fn) for all n. Hence ρ(x , y) = 0 and x = y . Thus
X has the nested set property.
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Proof

Proof Continued.

Now suppose that X has the nested set property. Let (xn) be a
Cauchy sequence in X . It will suffice to prove that (xn) converges.
Let Fn = { xk : k ≥ n }. Clearly, Fn+1 ⊂ Fn (because A ⊂ B
implies A ⊂ B).
Let M be such that n,m ≥ M implies ρ(xn, xm) < ε. Let
A = { xk : k ≥ M } so that FM = A. Let x , y ∈ FM and fix δ > 0.
Then there are a, b ∈ A such that ρ(x , a) < δ/2 and ρ(y , b) < δ/2.
Then using the reverse triangle inequality,

ρ(x , y) ≤ |ρ(x , y)− ρ(a, b)|+ ρ(a, b)

≤ |ρ(x , y)− ρ(x , b)|+ |ρ(x , b)− ρ(a, b)|+ ρ(a, b)

≤ ρ(y , b) + ρ(x , a) + ρ(a, b) < δ + ε.

Since δ is arbitrary, ρ(x , y) ≤ ε. Since x , y ∈ FM are arbitrary,
diam(FM) ≤ ε.
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Proof

Proof Continued.

We have shown that diam(Fn)→ 0. Hence⋂
Fn = { x }

for some x ∈ X . Since ρ(xn, x) ≤ diam(Fn), it follows that xn → x .
Therefore X is complete.

Time for a break.

Are there questions or comments?

Start recording again.
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Compactness

Definition

If E ⊂ X , then a family U = {Ui }i∈I ⊂ P(X ) is called a cover of
E if

E ⊂
⋃
i∈I

Ui .

A subset V ⊂ U—say V = {Uj }j∈J with J ⊂ I— is called a
subcover of U if V also covers E . That is,

E ⊂
⋃
j∈J

Uj .

If X is a metric space, then a cover U = {Ui }i∈I is called open if
each Ui is open in X .

Dana P. Williams Math 73/103: Fall 2020 Lecture 3



The Defintion

Definition

A metric space X is compact if every open over of X has a finite
subcover.

Remark

Never has a definition seemed—at first blush—to be so odd and
unmotivated. Full disclosure—this version of the definition did not
come first. Nevertheless, the open cover concept has proven itself
to be very valuable.
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This Definition is Subtle

Example

Consider X = [0, 1) ⊂ R (with the usual metric). Of course, X has
finite open covers. Every metric space does. Let V be the open
cover consisting of the sets [0, x) and (y , 1) for all 0 < x , y < 1.
then { [0, 34), (12 , 1) } is a finite subcover. This proves nothing! But
U = { [0, x) : 0 < x < 1 } is an open cover which has no finite
subcover:

n⋃
k=1

[0, xk) = [0, xk0) ( [0, 1)

where xk0 = max1≤k≤n xk . This shows that [0, 1) is not compact.
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Compactness

Example

Any finite metric space is compact.

Proposition

Suppose that K is a subspace of a metric space X . Then K is
compact if and only if every open over of K in X has a finite
subcover.

Proof.

Suppose that K is compact. Let {Ui }i∈I be an open cover of K in
X . That is, K ⊂

⋃
i∈I Ui , and each Ui is open in X . Then Ui ∩ K

is open in K and K =
⋃

i∈I Ui ∩ K . Since K is compact, there are
ii , . . . , in such that K =

⋃n
j=1 Uij ∩ K . Then K ⊂

⋃n
j=1 Uij .
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The Converse

Proof Continued.

Now suppose that K has the given property in X . Let K =
⋃

i∈I vi
be an open over of K (in K ). Then there are open sets Ui in X
such that Vi = Ui ∩ K . Then K ⊂

⋃
i∈I Ui . By assumption, there

are i1, . . . , in such that K ⊂
⋃n

j=1 Uj . Then K =
⋃n

j=1 Vj . Hence
K is compact as required.
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Closed Sets

Definition

A collection F of subsets of X has the finite intersection property (FIP)
if given F1, . . . ,Fn ∈ F , we have

⋂n
k=1 Fk 6= ∅.

Example

Let Fn = [n,∞) ⊂ R and F = {Fn }n∈N. Then F is a collection of
closed subsets of R with the FIP.

Proposition

A metric space X is compact if and only if every collection F of closed
subsets of X with the FIP satisfies

⋂
F∈F F 6= ∅.

Proof.

Take complements.

Example

R is not compact:
⋂

n[n,∞) = ∅.
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Total Boundedness

Remark

Recall that a subset of a metric space is bounded if it has finite
diameter. It is not hard to see that B is bounded if and only if
B ⊂ Br (x0) for some x0 ∈ X and r > 0.

Definition

A metric space X is totally bounded if for all ε > 0, X has a finite
cover by ε-balls. A subspace E ⊂ X is totally bounded, if it is
totally bounded as a subspace.

Definition

Suppose that E is a subspace of X and that ε > 0. Then an ε-net
for E is a finite collection {Bε(xi ) }ni=1 with xi ∈ X such that
E ⊂

⋃n
i=1 Bε(xi ).
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The Point

Lemma

Subset E in a metric space X is totally bounded if and only if
there is an ε-net for E in X for all ε > 0.

Proof.

I am leaving this for homework. The issue is that if {Bε(xi }ni=1 is
an ε-net for E in X , then {BE

ε (xi ) }ni=1 is not a cover of E by
ε-balls in E since we don’t necessarily have xi ∈ E ! But this is
easily fixed.
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What Are We On About?

Example

Let X = `2 and let B = { x ∈ `2 : ‖x‖2 ≤ 1 } be the closed unit
ball. Clearly, B is bounded: diam(B) = 2. Let en ∈ `2 be given by

en(k) =

{
1 if k = n, and

0 otherwise.

(More succinctly, en(k) = δnk .) Then en ∈ B and if n 6= m, then
‖en − em‖2 =

√
2. Let ε =

√
2/3. Then any ε-ball in `2 can

contain at most one en! Therefore, there is no ε-net for B in `2. In
short, B is bounded by not totally bounded.
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Why Our Intuition is Wrong

Proposition

A subset of (Rn, ‖ · ‖2) is bounded if and only if it is totally
bounded.

Remark

The same is true for any metric strongly equivalent to that induced
by ‖ · ‖2.

Proof.

Since totally bounded sets are easily seen to be bounded in any
metric space, it suffices to consider a bounded subspace E ⊂ Rn

and show that it is totally bounded. Hence given ε > 0, it suffices
to find an ε-net for E .
Since E is bounded, there is a a > 0 such that

E ⊂ [−a, a]× · · · × [−a, a] = [−a, a]n.
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Proof

Proof Continued.

Let Pk be a regular partition of [−a, a] such
that the length of each subinterval is bounded
by 1

k . Then Pk × · · · × Pk gives a partition of
[−a, a]n into n-cubes of diameter bounded by√
n/k . If we let k be such that

√
n/k < ε.

This means that if x ∈ Pn
k , then Bε(x)

contains every n-cube for which x is a vertex.
Hence E ⊂

⋃
x∈Pn

k
Bε(x).

Definition

A metric space X is sequentially compact if every sequence in X
has a convergent subsequence in X .
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Example

Let X = { 1
n : n ∈ N } ∪ { 0 }. I claim that X is sequentially

compact.

Proof.

Let (xk) be a sequence in X . Suppose that for some n,
{ k : xk = 1

n } is infinite. Then we can find k1 such that xk1 = 1
n . If

we have found k1 < k2 < · · · kr such that xkj = 1
n for all 1 ≤ j ≤ r ,

then we can find kr+1 > kr such that xkr+1 = 1
n . That is we can

find a constant subsequence (xkj ) converging to 1
n ∈ X . Otherwise,

we can assume { k : xk = 1
n } is finite for all n. Then I claim (xk)

already converges to 0 ∈ X . Let ε > 0. Then there is a N such
that 1

N < ε. Note that there are at most finitely many k such that
xk = 1

n with n ≤ N. Hence there is a M such that k ≥ M implies
xk is either 0 or is of the form 1

n with n ≥ N. Therefore k ≥ M
implies |xk − 0| < ε as required.
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Characterizing Compact Metric Spaces

Time for another break.

First, questions and comments.

Start recording again.

Let’s see if there is time to prove a big theorem.

Theorem

Let X be a metric space. The following are equivalent.

1 X is compact.

2 X is complete and totally bounded.

3 X is sequentially compact.
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Proof

(2)=⇒(1).

We suppose that X is complete and totally bounded. To the
contrary of what we want to show, assume that X is not compact.
Then X has an open over U = {Ui }i∈I which has no finite
subcover.

Since X is totally bounded, it has a finte cover by 1
2 -balls. At least

one of these can’t be covered by finitely many Ui . Let F1 be its
closure. Note that diam(F1) ≤ 1 and F1 can’t be covered by
finitely many Ui .

Now over X by finitely many 1
4 -balls. At least one of these has a

nonempty intersection with F1 that can’t be covered by finitely
many Ui . Let F2 be the closure of the intersection of that 1

4 ball
with F1. Note that F2 ⊂ F1 and that diam(F2) ≤ 1

2 . Furthermore,
F2 can’t be covered by finitely many Ui .
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Proof

(2)=⇒(1) continued.

Continuing inductively, we nonempty closed sets Fn such that
Fn+1 ⊂ Fn, diam(Fn) ≤ 1

n , and no Fn can be covered by finitely
many Ui .

Since X is complete, it has the nested set property and there is a
unique x ∈ X such that { x } =

⋂
Fn.

But there is an i0 such that x ∈ Ui0 . Since Ui0 is open, there is a
r > 0 such that Br (x) ⊂ Ui0 . Since diam(Fn)→ 0, there is a n
such that

x ∈ Fn ⊂ Br (x) ⊂ Ui0 .

But this is a contradiction.

Thus we have proved (2)=⇒(1).

Dana P. Williams Math 73/103: Fall 2020 Lecture 3



That’s Enough for Today

That is enough for now.
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