# Math 73/103: Fall 2020 Lecture 4

Dana P. Williams

Dartmouth College

September 21, 2020

- We should be recording!
- This a good time to ask questions about the previous lecture, complain, or tell a story.
- As I mentioned, I hope that you have the bandwidth to keep your video on during the class meeting. This makes it seem a little more "real" for me. But this is voluntary.
- I am still fighting with gradescope. Probably you will be asked to upload your assignment Wednesday to canvas instead. But let's wait until lecture Wednesday.

## Theorem

Let X be a metric space. The following are equivalent.

- X is compact.
- 2 X is complete and totally bounded.
- 3 X is sequentially compact.

# $(2) \Longrightarrow (1).$

We suppose that X is complete and totally bounded. To the contrary of what we want to show, assume that X is not compact. Then X has an open over  $\mathcal{U} = \{ U_i \}_{i \in I}$  which has no finite subcover.

Since X is totally bounded, it has a finte cover by  $\frac{1}{2}$ -balls. At least one of these can't be covered by finitely many  $U_i$ . Let  $F_1$  be its closure. Note that diam $(F_1) \leq 1$  and  $F_1$  can't be covered by finitely many  $U_i$ .

Now over X by finitely many  $\frac{1}{4}$ -balls. At least one of these has a nonempty intersection with  $F_1$  that can't be covered by finitely many  $U_i$ . Let  $F_2$  be the closure of the intersection of that  $\frac{1}{4}$  ball with  $F_1$ . Note that  $F_2 \subset F_1$  and that diam $(F_2) \leq \frac{1}{2}$ . Furthermore,  $F_2$  can't be covered by finitely many  $U_i$ .

# Proof

# $(2) \Longrightarrow (1)$ continued.

Continuing inductively, we nonempty closed sets  $F_n$  such that  $F_{n+1} \subset F_n$ , diam $(F_n) \leq \frac{1}{n}$ , and no  $F_n$  can be covered by finitely many  $U_i$ .

Since X is complete, it has the nested set property and there is a unique  $x \in X$  such that  $\{x\} = \bigcap F_n$ .

But there is an  $i_0$  such that  $x \in U_{i_0}$ . Since  $U_{i_0}$  is open, there is a r > 0 such that  $B_r(x) \subset U_{i_0}$ . Since diam $(F_n) \to 0$ , there is a n such that

$$x \in F_n \subset B_r(x) \subset U_{i_0}.$$

But this is a contradiction.

Thus we have proved  $(2) \Longrightarrow (1)$ .

# $(1) \Longrightarrow (3).$

Now we assume that X is compact. Let  $(x_n)$  be a sequence in X. We need to see that  $(x_n)$  has a convergent subsequence.

Let  $F_n = \overline{\{x_k : k \ge n\}}$ . Clearly  $\mathcal{F} = \{F_n : n \in \mathbb{N}\}$  has the FIP. Since X is compact, there is a  $x \in \bigcap_n F_n$ .

Since  $x \in F_1 = \overline{\{x_k : k \ge 1\}}$ , we must have  $B_1(x) \cap \{x_k : k \ge 1\}$ . Choose  $n_1$  such that  $x_{n_1} \in B_1(x)$ .

Similarly,  $x \in F_{n_1+1} = \overline{\{x_k : k \ge n_1+1\}}$ . Hence there is a  $n_2 > n_1$  such that  $x_{n_2} \in B_{\frac{1}{2}}(x)$ .

Continuing inductively, we get a subsequence  $(x_{n_k})$  such that  $x_{n_k} \in B_{\frac{1}{k}}(x)$ . Hence  $x_{n_k} \to x$ . This establishes that  $(1) \Longrightarrow (3)$ .

# Proof



Now we assume X is sequentially compact. Let  $\rho$  be the metric on X. we are tasked with showing that X is *both* totally bounded and complete.

Suppose to the contrary that X is not totally bounded. Then there is a  $\epsilon > 0$  so that X can't be covered by finitely many  $\epsilon$ -balls.

Pick  $x_1 \in X$ . Then  $X \setminus B_{\epsilon}(x_1)$  is nonempty and there is a  $x_2 \in X$  such that  $\rho(x_1, x_2) \ge \epsilon$ .

But  $X \setminus (B_{\epsilon}(x_1) \cup B_{\epsilon}(x_2)) \neq \emptyset$ . Hence there is a  $x_3 \in X$  such that  $\rho(x_3, x_1) \ge \epsilon$  and  $\rho(x_3, x_2) \ge \epsilon$ .

Continuing inductively, we get a sequence  $(x_n)$  such that  $\rho(x_n, x_m) \ge \epsilon$  if  $n \ne m$ . Of course, such a sequence can have no subsequence which is Cauchy let alone convergent.

Hence X must be totally bounded if X is sequentially compact.

# $(3) \Longrightarrow (2)$ continued.

Finally, if X is sequentially compact and  $(x_n)$  is a Cauchy sequence, then  $(x_n)$  must have a convergent subsequence. Hence  $(x_n)$  is convergent (by a homework problem). Hence X is complete as well. This completes the proof of  $(3) \Longrightarrow (2)$ , and also completes the proof of the theorem.

- Whether or not a subset K of a metric space (X, ρ) is compact depends only on the topology τ<sub>ρ</sub>.
- Hence if ρ and σ are equivalent metrics on X, then (X, ρ) is compact (respectively, sequentially compact) if and only if (X, σ) is compact (resp., sequentially compact).

# **Euclidean Space**

#### Remark

We know that **R** and **C** are complete with respect to their usual metrics. The same is true of  $(\mathbf{R}^n, \|\cdot\|_p)$  and  $(\mathbf{C}^n, \|\cdot\|_p)$  for any  $1 \le p \le \infty$ . For example, we can view  $(\mathbf{R}^n, \|\cdot\|_p)$  as a closed subspace of  $\ell_{\mathbf{R}}^p$ . Or we could just observe that if  $(x_n)$  is Cauchy in  $\ell^p$ , then  $(x_n(k))$  is Cauchy in **C** for all k.

#### Corollary

A subspace  $K \subset (\mathbf{R}^n, \|\cdot\|_2)$  is compact if and only if it is closed and bounded.

#### Proof.

Since  $\mathbf{R}^n$  is complete, K is complete if and only if it is closed. We also proved that subsets of  $\mathbf{R}^n$  are bounded if and only if they are totally bounded.

### Theorem (Bolzano-Weierstrass Theorem)

Every bounded sequence in  $\mathbf{R}^n$  has a convergent subsequence.

# Extreme Value Theorem

### Theorem (Extreme Value Theorem)

Suppose that X is a compact metric space and  $f \in C(X, \mathbb{R})$ —that is,  $f : X \to \mathbb{R}$  is continuous. Then f attains its maximum and minimum on X. (That is, there are  $x_1, x_2 \in X$  such that  $f(x_1) \leq f(x) \leq f(x_2)$  for all  $x \in X$ .) In particular, if  $f \in C(X)$ , then f is bounded.

### Proof.

If  $f: X \to \mathbf{C}$  is continuous, then so is  $|f|: X \to \mathbf{R}$ . Hence the second assertion follows from the first. But you will prove on homework that if  $f \in C(X, \mathbf{R})$ , then f(X) is compact in  $\mathbf{R}$ . This means that f(X) is closed and bounded. But if  $M = \sup_{x \in X} f(x)$ , then  $M < \infty$  and there is a sequence  $(x_n) \subset X$  such that  $f(x_n) \to M$ . Hence  $M \in f(X)$  and there is a  $x \in X$  such that f(x) = M.

For the minimum, replace f by -f.

# Why was "Attain" in Red?

## Example

Let  $f(t) = \frac{1}{1+t^2}$ . Then  $f : \mathbf{R} \to \mathbf{R}$  is continuous and never vanishes. However, there is no m > 0 such that  $f(t) \ge m$  for all  $t \in \mathbf{R}$ .

### Corollary

Suppose that X is a compact metric space and  $f \in C(X)$  never vanishes on X. Then there is a m > 0 such that  $|f(x)| \ge m$  for all  $x \in X$ .

#### Proof.

We can apply the Extreme Value Theorem to g(x) = |f(x)|. Then there is a  $x_0 \in X$  such that

$$0 < g(x_0) = m \leq g(x)$$
 for all  $x \in X$ .

- Let's Take a Break.
- First, Questions?
- Restart recording.

#### Definition

Let  $\mathcal{U} = \{ U_i \}_{i \in I}$  be an open cover of a metric space  $(X, \rho)$ . We say that d > 0 is a Lebesque number for  $\mathcal{U}$  if for all  $x_0 \in X$  there is a  $i_0 \in I$  such that  $B_r(x_0) \subset U_{i_0}$ .

### Example

Let  $X = \mathbf{R}$ ,  $U_1 = (-\infty, 1)$ ,  $U_2 = (0, 2)$ , and  $U_3 = (1, \infty)$ . Then any  $0 < d \le \frac{1}{2}$  is a Lebesgue number for  $\mathcal{U} = \{ U_1, U_2, U_3 \}$ : if  $r \ge \frac{3}{2}$ , then  $B_d(r) \subset (1, \infty)$ . If  $r \le \frac{1}{2}$ , then  $B_d(r) \subset (-\infty, 1)$ . Then if  $r \in (\frac{1}{2}, \frac{3}{2})$ , then  $B_d(r) \subset (0, 2)$ .

#### Example

Since  $f(x) = \frac{1}{x}$  is continuous on (0, 1), there is a  $\delta_x > 0$  so that  $y \in B_{\delta_x}(x) = \{ y \in (0, 1) : |y - x| < \delta_x \}$  implies  $\left| \frac{1}{y} - \frac{1}{x} \right| < 1.$ 

Then

$$(0,1)\subset igcup_{x\in(0,1)}B_{\delta_x}(x).$$

For a homework problem, you can verify that this cover does not have a Lebesgue number.

# Theorem (Lebesgue Covering Lemma)

Every open cover of a compact space has a Lebesgue number.

### Proof.

Suppose that  $(X, \rho)$  is compact and that  $X = \bigcup_{i \in I} U_i$  does not have a Lebesgue number. Then for all  $n \ge 1$ , there is a  $x_n \in X$  such that  $B_{\frac{1}{n}}(x_n)$  is not contained in any  $U_i$ . But  $(x_n)$  must have a convergent subsequence  $x_{n_k} \to x_0$  in X. Then there is an  $i_0$  such that  $x_0 \in U_{i_0}$ . But there is a r > 0 such that  $B_r(x_0) \subset U_{i_0}$ . Pick k such that  $\rho(x_{n_k}, x_0) < \frac{r}{2}$  and  $\frac{1}{n_k} < \frac{r}{2}$ .

Now if  $y \in B_{1/n_k}(x_{n_k})$ , then

$$\rho(y, x_0) \leq \rho(y, x_{n_k}) + \rho(x_{n_k}, x_0) < \frac{1}{n_k} + \frac{r}{2} < \frac{r}{2} + \frac{r}{2} = r.$$

This shows that  $B_{1/n_k}(x_{n_k}) \subset U_{i_0}$ . But this contradicts our assumption on  $x_{n_k}$ .

#### Theorem

Suppose that  $(X, \rho)$  is compact and that  $f : (X, \rho) \to (Y, \sigma)$  is continuous. Then f is uniformly continuous.

### Proof.

Fix  $\epsilon > 0$ . We need to find  $\delta > 0$  such that  $\rho(x, y) < \delta$  implies  $\sigma(f(x), f(y)) < \epsilon$ . Since f is continuous, for all  $z \in X$ , there is a  $\delta_z > 0$  so that  $f(B_{\delta_z}(z)) \subset B_{\epsilon/2}(f(z))$ . Let  $\delta$  be a Lesbesgue number for the cover  $X = \bigcup_{z \in X} B_{\delta_z}(z)$ . Now if  $\rho(x, y) < \delta$ , there there is a z such that  $B_{\delta}(x) \subset B_{\delta_z}(z)$ . But then if  $y \in B_{\delta}(x)$ , both x and y are in  $B_{\delta_z}(z)$  and

$$\sigma(f(x), f(y)) \leq \sigma(f(x), f(z)) + \sigma(f(z), f(y)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This is what we wanted to show.

- Let's Take a Break.
- First, Questions?
- Restart recording.

# Definition

Let  $(X, \rho)$  be a metric space and C(X) the complex vector space of continuous functions on X. We say that  $\mathcal{F} \subset C(X)$  is equicontinuous at  $x_0 \in X$  if for all  $\epsilon > 0$  there is a  $\delta > 0$  so that for all  $f \in \mathcal{F}$ 

 $f(B_{\delta}(x_0)) \subset B_{\epsilon}(f(x_0)).$ 

We say that  $\mathcal{F}$  is equicontinuous on X if  $\mathcal{F}$  is equicontinuous at every  $x_0 \in X$ .

## Remark

Note that if  $\mathcal{F} = \{f\}$ , then  $\mathcal{F}$  is equicontinuous whenever f is continuous. It is not hard to see that if  $\mathcal{F} \subset C(X)$  is finite, then  $\mathcal{F}$  is always equicontinuous.

### Example

Let X = [0, 1], and let  $f_n(x) = x^n$  for all  $n \ge 1$ . Let  $x_n = \left(\frac{1}{2}\right)^{\frac{1}{n}}$ . Note that  $x_n \nearrow 1$ . Furthermore,

$$|f_n(x_n)-1|=\frac{1}{2}.$$

It follows that  $\mathcal{F} = \{ f_n : n \ge 1 \}$  is not equicontinuous at 1.

### Remark

As a challenging homework problem, you are to show that  $\mathcal{F} = \{ f_n : n \ge 1 \}$  is equicontinuous at each  $x \in [0, 1)$ .

#### Definition

A sequence  $(f_n)$  of functions on X is uniformly bounded if there is a M > 0 such that  $|f_n(x)| \le M$  for all  $x \in X$  and all  $n \ge 1$ . We say that  $(f_n)$  is pointwise bounded if for each  $x \in X$  there is a  $M_x > 0$  such that  $|f_n(x)| \le M_x$  for all  $n \ge 1$ .

### Example

Let 
$$f_n(x) = \begin{cases} |x| & \text{if } |x| \le n, \\ n & \text{if } |x| \ge n. \end{cases}$$
. Then  $(f_n)$  is pointwise bounded on **R**; we can let  $M_x = |x|$ . But  $(f_n)$  is not uniformly bounded.

# Dense Sets

#### Definition

A subset of *D* of metric space *X* is dense if  $\overline{D} = X$ .

#### Lemma

Let D be a subset of a metric space X. The following are equivalent.

- D is dense in X.
- **2** Given  $x \in X$ , there is a sequence  $(d_n)$  in D such that  $d_n \to x$ .

**(**)  $U \cap D \neq \emptyset$  for any nonempty open set U in X.

#### Proof.

(1) $\Longrightarrow$ (2): If  $\overline{D} = X$ , then every point in X is a limit point of D.

(2) $\Longrightarrow$ (3): Suppose that  $x \in U$  and than U is open. Let  $(d_n) \subset D$  be such that  $d_n \to x$ . Then  $(d_n)$  is eventually in U and  $U \cap D \neq \emptyset$ .

(3) $\Longrightarrow$ (1): Suppose that  $\overline{D} = F \subsetneq X$ . Then  $U = X \setminus F$  is nonempty and open. Hence  $D \cap U \neq \emptyset$ .

### Example

The rationals, **Q** are dense in **R** and **Q** + *i***Q** is dense in **C**. More generally, **Q**<sup>n</sup> and  $(\mathbf{Q} + i\mathbf{Q})^n$  are dense in **R**<sup>n</sup> and **C**<sup>n</sup> with respect to any of the metrics induced by the *p*-norms for  $1 \le p \le \infty$ .

#### Example

Let D be the set of complex sequences that are eventually zero. Thus  $d \in D$  if there is a  $N \in \mathbf{N}$  such that d(k) = 0 if  $k \ge N$ . Then D is dense in  $\ell^p$  for any  $1 \le p < \infty$ .

#### Proof.

If  $x \in \ell^p$ , then  $\sum_{k=1}^{\infty} |x_k|^p < \infty$ . Hence given  $\epsilon > 0$ , there is a N such that  $\sum_{k=N}^{\infty} |x_k|^p < \epsilon^p$ . Thus if  $y \in D$  is the the sequence x truncated at N,  $||x - y||_p < \epsilon$ .

• That is enough for now.