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Getting Started

We should be recording!

This a good time to ask questions about the previous lecture,
complain, or tell a story.

As I mentioned, I hope that you have the bandwidth to keep
your video on during the class meeting. This makes it seem a
little more “real” for me. But this is voluntary.

I am still fighting with gradescope. Probably you will be asked
to upload your assignment Wednesday to canvas instead. But
let’s wait until lecture Wednesday.
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Last Time

Theorem

Let X be a metric space. The following are equivalent.

1 X is compact.

2 X is complete and totally bounded.

3 X is sequentially compact.
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Proof

(2)=⇒(1).

We suppose that X is complete and totally bounded. To the
contrary of what we want to show, assume that X is not compact.
Then X has an open over U = {Ui }i∈I which has no finite
subcover.

Since X is totally bounded, it has a finte cover by 1
2 -balls. At least

one of these can’t be covered by finitely many Ui . Let F1 be its
closure. Note that diam(F1) ≤ 1 and F1 can’t be covered by
finitely many Ui .

Now over X by finitely many 1
4 -balls. At least one of these has a

nonempty intersection with F1 that can’t be covered by finitely
many Ui . Let F2 be the closure of the intersection of that 1

4 ball
with F1. Note that F2 ⊂ F1 and that diam(F2) ≤ 1

2 . Furthermore,
F2 can’t be covered by finitely many Ui .
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Proof

(2)=⇒(1) continued.

Continuing inductively, we nonempty closed sets Fn such that
Fn+1 ⊂ Fn, diam(Fn) ≤ 1

n , and no Fn can be covered by finitely
many Ui .

Since X is complete, it has the nested set property and there is a
unique x ∈ X such that { x } =

⋂
Fn.

But there is an i0 such that x ∈ Ui0 . Since Ui0 is open, there is a
r > 0 such that Br (x) ⊂ Ui0 . Since diam(Fn)→ 0, there is a n
such that

x ∈ Fn ⊂ Br (x) ⊂ Ui0 .

But this is a contradiction.

Thus we have proved (2)=⇒(1).
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Proof

(1)=⇒(3).

Now we assume that X is compact. Let (xn) be a sequence in X .
We need to see that (xn) has a convergent subsequence.

Let Fn = { xk : k ≥ n }. Clearly F = {Fn : n ∈ N } has the FIP.
Since X is compact, there is a x ∈

⋂
n Fn.

Since x ∈ F1 = { xk : k ≥ 1 }, we must have B1(x)∩ { xk : k ≥ 1 }.
Choose n1 such that xn1 ∈ B1(x).

Similarly, x ∈ Fn1+1 = { xk : k ≥ n1 + 1 }. Hence there is a
n2 > n1 such that xn2 ∈ B 1

2
(x).

Continuing inductively, we get a subsequence (xnk ) such that
xnk ∈ B 1

k
(x). Hence xnk → x . This establishes that (1)=⇒(3).
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Proof

(3)=⇒(2).

Now we assume X is sequentially compact. Let ρ be the metric on
X . we are tasked with showing that X is both totally bounded and
complete.

Suppose to the contrary that X is not totally bounded. Then there
is a ε > 0 so that X can’t be covered by finitely many ε-balls.

Pick x1 ∈ X . Then X \ Bε(x1) is nonempty and there is a x2 ∈ X
such that ρ(x1, x2) ≥ ε.

But X \
(
Bε(x1) ∪ Bε(x2)

)
6= ∅. Hence there is a x3 ∈ X such that

ρ(x3, x1) ≥ ε and ρ(x3, x2) ≥ ε.

Continuing inductively, we get a sequence (xn) such that
ρ(xn, xm) ≥ ε if n 6= m. Of course, such a sequence can have no
subsequence which is Cauchy let alone convergent.

Hence X must be totally bounded if X is sequentially compact.
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Proof

(3)=⇒(2) continued.

Finally, if X is sequentially compact and (xn) is a Cauchy
sequence, then (xn) must have a convergent subsequence. Hence
(xn) is convergent (by a homework problem). Hence X is complete
as well. This completes the proof of (3)=⇒(2), and also completes
the proof of the theorem.

Dana P. Williams Math 73/103: Fall 2020 Lecture 4



Some Observations

Whether or not a subset K of a metric space (X , ρ) is
compact depends only on the topology τρ.

Hence if ρ and σ are equivalent metrics on X , then (X , ρ) is
compact (respectively, sequentially compact) if and only if
(X , σ) is compact (resp., sequentially compact).
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Euclidean Space

Remark

We know that R and C are complete with respect to their usual metrics.
The same is true of (Rn, ‖ · ‖p) and (Cn, ‖ · ‖p) for any 1 ≤ p ≤ ∞. For
example, we can view (Rn, ‖ · ‖p) as a closed subspace of `pR. Or we could
just observe that if (xn) is Cauchy in `p, then (xn(k)) is Cauchy in C for
all k.

Corollary

A subspace K ⊂ (Rn, ‖ · ‖2) is compact if and only if it is closed and
bounded.

Proof.

Since Rn is complete, K is complete if and only if it is closed. We also
proved that subsets of Rn are bounded if and only if they are totally
bounded.

Theorem (Bolzano-Weierstrass Theorem)

Every bounded sequence in Rn has a convergent subsequence.
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Extreme Value Theorem

Theorem (Extreme Value Theorem)

Suppose that X is a compact metric space and f ∈ C (X ,R)—that
is, f : X → R is continuous. Then f attains its maximum and
minimum on X . (That is, there are x1, x2 ∈ X such that
f (x1) ≤ f (x) ≤ f (x2) for all x ∈ X.) In particular, if f ∈ C (X ),
then f is bounded.

Proof.

If f : X → C is continuous, then so is |f | : X → R. Hence the
second assertion follows from the first. But you will prove on
homework that if f ∈ C (X ,R), then f (X ) is compact in R. This
means that f (X ) is closed and bounded. But if M = supx∈X f (x),
then M <∞ and there is a sequence (xn) ⊂ X such that
f (xn)→ M. Hence M ∈ f (X ) and there is a x ∈ X such that
f (x) = M.

For the minimum, replace f by −f .
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Why was “Attain” in Red?

Example

Let f (t) =
1

1 + t2
. Then f : R→ R is continuous and never

vanishes. However, there is no m > 0 such that f (t) ≥ m for all
t ∈ R.

Corollary

Suppose that X is a compact metric space and f ∈ C (X ) never
vanishes on X . Then there is a m > 0 such that |f (x)| ≥ m for all
x ∈ X.

Proof.

We can apply the Extreme Value Theorem to g(x) = |f (x)|. Then
there is a x0 ∈ X such that

0 < g(x0) = m ≤ g(x) for all x ∈ X .
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Break Time

Let’s Take a Break.

First, Questions?

Restart recording.
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Lebesgue Numbers

Definition

Let U = {Ui }i∈I be an open cover of a metric space (X , ρ). We
say that d > 0 is a Lebesque number for U if for all x0 ∈ X there
is a i0 ∈ I such that Br (x0) ⊂ Ui0 .

Example

Let X = R, U1 = (−∞, 1), U2 = (0, 2), and U3 = (1,∞). Then
any 0 < d ≤ 1

2 is a Lebesgue number for U = {U1,U2,U3 }: if
r ≥ 3

2 , then Bd(r) ⊂ (1,∞). If r ≤ 1
2 , then Bd(r) ⊂ (−∞, 1).

Then if r ∈ (12 ,
3
2), then Bd(r) ⊂ (0, 2).
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Example

Example

Since f (x) = 1
x is continuous on (0, 1), there is a δx > 0 so that

y ∈ Bδx (x) = { y ∈ (0, 1) : |y − x | < δx } implies∣∣∣1
y
− 1

x

∣∣∣ < 1.

Then

(0, 1) ⊂
⋃

x∈(0,1)

Bδx (x).

For a homework problem, you can verify that this cover does not
have a Lebesgue number.
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Covering Lemma

Theorem (Lebesgue Covering Lemma)

Every open cover of a compact space has a Lebesgue number.

Proof.

Suppose that (X , ρ) is compact and that X =
⋃

i∈I Ui does not have a
Lebesgue number. Then for all n ≥ 1, there is a xn ∈ X such that B 1

n
(xn)

is not contained in any Ui . But (xn) must have a convergent subsequence
xnk → x0 in X . Then there is an i0 such that x0 ∈ Ui0 . But there is a
r > 0 such that Br (x0) ⊂ Ui0 . Pick k such that ρ(xnk , x0) < r

2 and
1
nk
< r

2 .

Now if y ∈ B1/nk (xnk ), then

ρ(y , x0) ≤ ρ(y , xnk ) + ρ(xnk , x0) <
1

nk
+

r

2
<

r

2
+

r

2
= r .

This shows that B1/nk (xnk ) ⊂ Ui0 . But this contradicts our assumption on
xnk .
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Uniform Continuity

Theorem

Suppose that (X , ρ) is compact and that f : (X , ρ)→ (Y , σ) is
continuous. Then f is uniformly continuous.

Proof.

Fix ε > 0. We need to find δ > 0 such that ρ(x , y) < δ implies
σ
(
f (x), f (y)

)
< ε. Since f is continuous, for all z ∈ X , there is a

δz > 0 so that f
(
Bδz (z)

)
⊂ Bε/2

(
f (z)

)
. Let δ be a Lesbesgue

number for the cover X =
⋃

z∈X Bδz (z). Now if ρ(x , y) < δ, there
there is a z such that Bδ(x) ⊂ Bδz (z). But then if y ∈ Bδ(x), both
x and y are in Bδz (z) and

σ
(
f (x), f (y)

)
≤ σ

(
f (x), f (z)

)
+ σ

(
f (z), f (y)

)
<
ε

2
+
ε

2
= ε.

This is what we wanted to show.

Dana P. Williams Math 73/103: Fall 2020 Lecture 4



Break Time

Let’s Take a Break.

First, Questions?

Restart recording.
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Equicontinuity

Definition

Let (X , ρ) be a metric space and C (X ) the complex vector space
of continuous functions on X . We say that F ⊂ C (X ) is
equicontinuous at x0 ∈ X if for all ε > 0 there is a δ > 0 so that
for all f ∈ F

f
(
Bδ(x0)

)
⊂ Bε

(
f (x0)

)
.

We say that F is equicontinuous on X if F is equicontinuous at
every x0 ∈ X .

Remark

Note that if F = { f }, then F is equicontinuous whenever f is
continuous. It is not hard to see that if F ⊂ C (X ) is finite, then F
is always equicontinuous.
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Example

Example

Let X = [0, 1], and let fn(x) = xn for all n ≥ 1. Let xn =
(
1
2

) 1
n .

Note that xn ↗ 1. Furthermore,∣∣fn(xn)− 1| =
1

2
.

It follows that F = { fn : n ≥ 1 } is not equicontinuous at 1.

Remark

As a challenging homework problem, you are to show that
F = { fn : n ≥ 1 } is equicontinuous at each x ∈ [0, 1).
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Preliminaries

Definition

A sequence (fn) of functions on X is uniformly bounded if there is
a M > 0 such that |fn(x)| ≤ M for all x ∈ X and all n ≥ 1. We
say that (fn) is pointwise bounded if for each x ∈ X there is a
Mx > 0 such that |fn(x)| ≤ Mx for all n ≥ 1.

Example

Let fn(x) =

{
|x | if |x | ≤ n,

n if |x | ≥ n.
. Then (fn) is pointwise bounded on

R; we can let Mx = |x |. But (fn) is not uniformly bounded.
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Dense Sets

Definition

A subset of D of metric space X is dense if D = X .

Lemma

Let D be a subset of a metric space X . The following are equivalent.

1 D is dense in X .

2 Given x ∈ X, there is a sequence (dn) in D such that dn → x.

3 U ∩ D 6= ∅ for any nonempty open set U in X .

Proof.

(1)=⇒(2): If D = X , then every point in X is a limit point of D.

(2)=⇒(3): Suppose that x ∈ U and than U is open. Let (dn) ⊂ D be
such that dn → x . Then (dn) is eventually in U and U ∩ D 6= ∅.

(3)=⇒(1): Suppose that D = F ( X . Then U = X \ F is nonempty and
open. Hence D ∩ U 6= ∅.
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Examples

Example

The rationals, Q are dense in R and Q + iQ is dense in C. More
generally, Qn and (Q + iQ)n are dense in Rn and Cn with respect
to any of the metrics induced by the p-norms for 1 ≤ p ≤ ∞.

Example

Let D be the set of complex sequences that are eventually zero.
Thus d ∈ D if there is a N ∈ N such that d(k) = 0 if k ≥ N.
Then D is dense in `p for any 1 ≤ p <∞.

Proof.

If x ∈ `p, then
∑∞

k=1 |xk |p <∞. Hence given ε > 0, there is a N
such that

∑∞
k=N |xk |p < εp. Thus if y ∈ D is the the sequence x

truncated at N, ‖x − y‖p < ε.
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That’s Enough for Today

That is enough for now.
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