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Getting Started

@ We should be recording!

@ This a good time to ask questions about the previous lecture,
complain, or tell a story.

@ As | mentioned, | hope that you have the bandwidth to keep
your video on during the class meeting. This makes it seem a
little more “real” for me. But this is voluntary.

@ | am still fighting with gradescope. For today’s assignment,
please upload it directly to canvas.
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Separable Spaces
Definition
A metric space X is called separable if it has a countable dense subset.

Note that R” and C” are separable. In fact, P is separable for all
1 < p < co. However, £*° is not separable.

To see that /P is separable, consider the set D’ of sequences taking
values in Q 4+ /Q and which are eventually zero. To see the ¢°° can’t be
separable, notice that for each A C N, let x4 be the sequence such that
xa(k) =1if and only if k € A. Then E ={xa€¢*:AcP(N)}is
uncountable and A # B implies ||xa — xg||lcoc = 1. Thus the balls B1(xa)
form an uncountable set of disjoint open balls. If D is dense, then

must meet every such ball and be uncountable. O
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Subsequences

@ Given a sequence (xp), a subsequence is determined by
choosing { nx } € N such that nx < ny1 for all k. Then our
subsequence is (Xn, )22 ;-

@ To get a subsubsequence, we need { k; } C N such that
ki < kj+1. Then we get (x,,k )21 Clearly this is ugly and hard
to grock even in IATEX.

@ Sometimes it is profitable to realize that a subsequence is
determined by an infinite subset
51:{n1<n2<n3<---}CN.

@ Then a subsubsequence is determined by choosing an infinite
subset Sp C Si: then So = { ng, < ng, < ---}. This makes it
clear that a subsubsequence is actually a subsequence.
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Notation

RENEILS

If S; ={n < np <---} determines a subsequence (xp, ), then we
can write

limx,=a or (Xp)hes, — a
neS;

is place of the old standby klim Xp, = a. You should convince
_>

oo
yourself that Iirg Xxp = a if and only if for all ¢ > 0 thereisa N
nes;

such that n > N and n € S; implies that p(x,,a) < e.

Lemma

Let (x,) be a sequence in a metric space X and let S; be an
infinite subset of N as above. Suppose that Sy is an infinite subset

of N such that {n € Sy : n¢ S} is finite. Then if Iirg Xp = a, we
neS

also have lim x, = a.
neS,
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Theorem (Arzela—Ascoli Lemma)

Suppose that X is a separable metric space. Let (f,) be a

pointwise bounded equicontinuous sequence in C(X). Then (f,)

has a subsequence (f,,) such that klim fn.(x) exists for all x € X.
—00

Let D = {x; }?°; be (countable) dense subset of X. By
assumption, (fy(x1)),y is a bounded sequence of complex
numbers. Hence it has a convergent sequence determined by an

infinite subset S; C N. Let a; = Iirg fo(x1). But (fn(x2)) is
nes;

neS;
also bounded. Hence there is an infinite subset S> C S; such that
lim f,(x2) = a>. Furthermore, lim f,(x1) = a7!
neS, n( 2) 2 265, n( 1) 1
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Proof

Proof Continued.

Continuing inductively we get Six11 C Sk such that

lim fy(xj))=a; forall1<;j<k+1
mESy 1
Let r, be the k''-term in S. Let S = {r, }5° ;. Note that there
are at most k — 1 terms in S not in Sx. Thus by our sequence
lemma,
lim f,(x;) = a; for all j.
o n(xj) = aj J
At this point, we can replace (f;)nen by (fn)nes and assume from
here on that
lim f,(x;) = a; forall x; € D.
neN
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Proof

Proof Continued.

Let xg € X. Since xq is arbitrary, it will suffice to prove that
(fa(x0)) is Cauchy. Fix € > 0. Since (f,) is equicontinuous at xp,
there is a d > 0 such that p(x, xp) < 0 implies

|fa(x) — fa(x0)| < €/3 for all n > 1. Since D is dense in X, there is
a j such that p(xj,x0) < 8. Since (f(x;)) is convergent, it is
Cauchy. Hence there is a N such that n, m > N implies that
|fa(x;) — fm(xj)| < €/3. Now if n,m > N, we have

|fn(x0) — fm(x0)| < [fa(x0) — fn(x;)| + [£2 () — Fm(x;) |+
(%) — fm(x0)|

€ € €
Sl e O
<3+3+3 €
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The Theorem

Suppose that X is a compact metric space. Then C(X) = Cp(X)
is a complete metric space with respect to the uniform norm.
Moreover, by a homework problem, X is separable and we can
apply the Arzela—Ascoli lemma to C(X).

Theorem (The Arzela—Ascoli Theorem)

Let X be a compact metric space. Let (f,) be a pointwise bounded
equicontinuous sequence. Then (f,) has a subsequence converging
uniformly to some f € C(X).

It is interesting to note that a uniformly convergent sequence in
C(X) is necessarily uniformly bounded (by a homework problem).
Hence our pointwise bounded equicontinuous sequence above must
actually be uniformly bounded.
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Preliminary Result

Lemma

Suppose that (X, p) is compact and that F C C(X) is
equicontinuous on X. Then F is uniformly equicontinuous in that
for all € > 0 there is a ¢ such that p(x,y) < & implies that

|f(x) — f(y)| <eforall f eF.

We will leave this as a homework exercise—see the proof that
continuous functions on compact spaces are necessarily uniformly
continuous. []

v
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The Proof

Proof of the AA Theorem.

Since compact metric spaces are separable, the AA Lemma applies
and we can assume (f,) has a subsequence (f,,) such that

fn(x) = f(x) for all x € X and some function f on X. To ease
the notational burden, there is no harm in replacing (f,) with this
subsequence so that f,(x) — f(x) for all x € X. In particular, we
can assume (fp(x)) is Cauchy for all x € X. Since C(X) is
complete, we just have to show that (f,) is uniformly Cauchy. That
is, given € > 0, we want to find N such that n,m > N implies

|fa(x) — fm(x)| < € forall x € X.
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Proof

Proof Continued.

By uniform equicontinuity, there is a § > 0 such that p(x,y) < ¢
implies that |f,(x) — f(y)| < €/3 for all n > 1. Since X is totally
bounded, there are xi,...,x, € X such that { Bs(x;) }/_; covers
X. Then there is a N such that n, m > N implies

|fa(x;) — fm(xj)| < €/3 for all 1 < j < n. Now if x € X and

n,m > N, there is a j such that x € Bs(x;). Then

[fn(x) — fm(X)| < |fa(x) — fa(xi)| + [fa(xi) — fm(x;)
+ | fm(x) — fm(x))]

€ € €
S 44— ]
<3+3+3 €
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@ Definitely time for a break.
@ Questions?

@ Start recording again.
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Corollary

Let X be a compact metric space. Suppose that F C C(X) be
closed in C(X) as well as equicontinuous on X and pointwise
bounded. Then F is a compact subset of C(X). In particular, F is
uniformly bounded.

It suffices to see that F is sequentially compact. Let (f,) be a
sequence in F. By the AA-Theorem, (f,) has a uniformly
convergent subsequence (f,, ). Since F is closed, f = limy f, € F.
Hence F is compact.

Since F is compact in C(X), it must be bounded (with respect to
the metric induced from || - ||«). Hence F is uniformly
bounded. O
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Compactness Theorem

Suppose that (X, p) is a compact metric space. Then F C C(X)
is compact if and only if F is closed, uniformly bounded, and
equicontinuous.

(<=): This direction follows from the Corollary. In fact, we can
replace uniformly bounded with pointwise bounded.
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The Converse

Proof.

(=): Now we assume that F is compact. Then F is closed in
C(X) (this is a homework exercise). Furthermore, F must be
bounded in C(X) and therefore uniformly bounded. The real issue
here is to see that F is equicontinuous. Assume to the contrary
that F is not equicontinuous at x € X. That means the statement

Ve > 0,36 > 0,s.t. p(x,y) <d = |f(x)—f(y)|<eVfeF

is false. Hence there is a g > 0 such that for all § > 0, the above
implication is false. Hence for all n > 1 there is a x, € X and
f € F such that p(xn, x) < % and

[fa(xn) — fa(x)| > €o.
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Proof

Proof Continued.

But F is compact, so (f,) has a convergent subsequence (f;,)
converging uniformly to f € C(X). Since f is continuous,

f(xn,) = f(x). Furthermore there is a N such that k > N implies
|fn, — flloo < €0/3. Then

£ (xn,) — £O)| = | (Xn,) — Ta, (Xny) + Fo (Xny ) — Fa (%)
+ fr(x) — £(x)]
> |fn, (x) = fn, (X0 )|
— £ (xn,) = fo (X, ) + f, (X) — £(x)|

But this eventually contradicts f(xp,) — f(x). O
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@ Definitely time for a break.
@ Questions?

@ Start recording again.
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A metric space is called a Baire space if the countable interection
of open dense sets is dense. That is, if O, is open and dense in X

for all n > 1, then
o0
Ao,
n=1

is dense in X.

This is a purely topological property. If p and o are equivalent
metrics on X, then (X, p) is Baire if and only if (X, o) is Baire.
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Interiors

Definition

If E is a subspace of a metric space X, then the interior of E is

Int(E) = U{UCX U C E and U is open in X }.

The interior Int(E) is the largest open set in X contained in E.

Viewed as a subset of R, Int(Q) = 0. Let E =[0,1). Then in R,
Int(E) = (0,1). But viewed as a subset of X = [0, 1], then
Int(E) = E.
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An Equivalent Formulation

A metric space X is Barie if and only if given countably many
closed sets { F, }°°; such that | J;-; F, has nonempty interior in
X, then at least one of the F,, has nonempty interior.
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Proof of the Lemma

Proof.

Note that a closed set F,, has nonempty interior if and only if
On = X\ F, is open and dense. Furthermore, X \ |J F, = () On.
Thus if |J F, has interior, () O, is not dense.

Suppose that X is Baire. Let { F, } be such that |J F,, has interior.
If each F,, has empty interior, then each O, is dense and () O,
would be dense. This contradicts our assumption on | J F,. Hence
some F, has interior as required.

On the other hand, suppose that X has the property described in
the statement of the lemma. Suppose that X is not Baire. Then
there are dense open sets O, such that (] O, is not dense. But
then | F, has interior. Hence one of the F, has interior and the
corresponding O, would not be dense. This contradicts our
assumptions and completes the proof. O
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Definition

A point in a metric space X is called isolated is { x } is open in X.

The subspace Z C R consists entirely of isolated points. The
interval [0, 1] has no isolated points.

Let X be a Baire space without isolated points. Then X is
uncountable.

Suppose that X = { x, }72;. Let F, = { x, } so that each F, is
closed X = |J F,,. Since X is open, the union has interior and
hence some F, has interior. But then { x, } is open and x, is
isolated. [
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Theorem (Baire Category Theorem)

Every complete metric space is a Baire space.

This applies to any metric space that admits an equivalent
complete metric or to any metric space homeomorphic to a
complete metric space. For example, (0,1) is homeomorphic to R.
Hence it is a Baire space in its standard topology.
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That's Enough for Today

@ That is enough for now.
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