Math 73/103: Fall 2020 Lecture 5

Dana P. Williams

Dartmouth College

September 23, 2020

- We should be recording!
- This a good time to ask questions about the previous lecture, complain, or tell a story.
- As I mentioned, I hope that you have the bandwidth to keep your video on during the class meeting. This makes it seem a little more "real" for me. But this is voluntary.
- I am still fighting with gradescope. For today's assignment, please upload it directly to canvas.

Definition

A metric space X is called separable if it has a countable dense subset.

Example

Note that \mathbf{R}^n and \mathbf{C}^n are separable. In fact, ℓ^p is separable for all $1 \le p < \infty$. However, ℓ^∞ is not separable.

Proof.

To see that ℓ^p is separable, consider the set D' of sequences taking values in $\mathbf{Q} + i\mathbf{Q}$ and which are eventually zero. To see the ℓ^{∞} can't be separable, notice that for each $A \subset N$, let x_A be the sequence such that $x_A(k) = 1$ if and only if $k \in A$. Then $E = \{x_A \in \ell^{\infty} : A \in \mathcal{P}(\mathbf{N})\}$ is uncountable and $A \neq B$ implies $\|x_A - x_B\|_{\infty} = 1$. Thus the balls $B_{\frac{1}{2}}(x_A)$ form an uncountable set of disjoint open balls. If D is dense, then D must meet every such ball and be uncountable.

- Given a sequence (x_n), a subsequence is determined by choosing { n_k } ⊂ N such that n_k < n_{k+1} for all k. Then our subsequence is (x_{nk})[∞]_{k=1}.
- To get a subsubsequence, we need { k_j } ⊂ N such that k_j < k_{j+1}. Then we get (x_{nk_j})[∞]_{j=1}. Clearly this is ugly and hard to grock even in LATEX.
- Sometimes it is profitable to realize that a subsequence is determined by an infinite subset $S_1 = \{ n_1 < n_2 < n_3 < \cdots \} \subset \mathbb{N}.$
- Then a subsubsequence is determined by choosing an infinite subset S₂ ⊂ S₁: then S₂ = { n_{k1} < n_{k2} < ···}. This makes it clear that a subsubsequence is actually a subsequence.

Notation

Remark

If $S_1 = \{ n_1 < n_2 < \cdots \}$ determines a subsequence (x_{n_k}) , then we can write

$$\lim_{n\in S_1} x_n = a \quad \text{or} \quad (x_n)_{n\in S_1} \to a$$

is place of the old standby $\lim_{k\to\infty} x_{n_k} = a$. You should convince yourself that $\lim_{n\in S_1} x_n = a$ if and only if for all $\epsilon > 0$ there is a Nsuch that $n \ge N$ and $n \in S_1$ implies that $\rho(x_n, a) < \epsilon$.

Lemma

Let (x_n) be a sequence in a metric space X and let S_1 be an infinite subset of \mathbb{N} as above. Suppose that S_2 is an infinite subset of \mathbb{N} such that $\{n \in S_2 : n \notin S_1\}$ is finite. Then if $\lim_{n \in S_1} x_n = a$, we also have $\lim_{n \in S_2} x_n = a$.

Theorem (Arzelà–Ascoli Lemma)

Suppose that X is a separable metric space. Let (f_n) be a pointwise bounded equicontinuous sequence in C(X). Then (f_n) has a subsequence (f_{n_k}) such that $\lim_{k\to\infty} f_{n_k}(x)$ exists for all $x \in X$.

Proof.

Let $D = \{x_i\}_{i=1}^{\infty}$ be (countable) dense subset of X. By assumption, $(f_n(x_1))_{n \in \mathbb{N}}$ is a bounded sequence of complex numbers. Hence it has a convergent sequence determined by an infinite subset $S_1 \subset \mathbb{N}$. Let $a_1 = \lim_{n \in S_1} f_n(x_1)$. But $(f_n(x_2))_{n \in S_1}$ is also bounded. Hence there is an infinite subset $S_2 \subset S_1$ such that $\lim_{n \in S_2} f_n(x_2) = a_2$. Furthermore, $\lim_{a \in S_2} f_n(x_1) = a_1!$

Proof Continued.

Continuing inductively we get $S_{k+1} \subset S_k$ such that

$$\lim_{m\in S_{k+1}} f_n(x_j) = a_j \quad \text{for all } 1 \le j \le k+1$$

Let r_k be the k^{th} -term in S_k . Let $S = \{r_k\}_{k=1}^{\infty}$. Note that there are at most k - 1 terms in S not in S_k . Thus by our sequence lemma,

$$\lim_{n\in S} f_n(x_j) = a_j \quad \text{for all } j.$$

At this point, we can replace $(f_n)_{n \in \mathbb{N}}$ by $(f_n)_{n \in S}$ and assume from here on that

$$\lim_{n\in\mathbf{N}}f_n(x_j)=a_j\quad\text{for all }x_j\in D.$$

Proof Continued.

Let $x_0 \in X$. Since x_0 is arbitrary, it will suffice to prove that $(f_n(x_0))$ is Cauchy. Fix $\epsilon > 0$. Since (f_n) is equicontinuous at x_0 , there is a $\delta > 0$ such that $\rho(x, x_0) < \delta$ implies $|f_n(x) - f_n(x_0)| < \epsilon/3$ for all $n \ge 1$. Since D is dense in X, there is a j such that $\rho(x_j, x_0) < \delta$. Since $(f_n(x_j))$ is convergent, it is Cauchy. Hence there is a N such that $n, m \ge N$ implies that $|f_n(x_j) - f_m(x_j)| < \epsilon/3$. Now if $n, m \ge N$, we have

$$\begin{aligned} |f_n(x_0) - f_m(x_0)| &\leq |f_n(x_0) - f_n(x_j)| + |f_n(x_j) - f_m(x_j)| + \\ & |f_m(x_j) - f_m(x_0)| \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{aligned}$$

The Theorem

Remark

Suppose that X is a compact metric space. Then $C(X) = C_b(X)$ is a complete metric space with respect to the uniform norm. Moreover, by a homework problem, X is separable and we can apply the Arzelà–Ascoli lemma to C(X).

Theorem (The Arzelà–Ascoli Theorem)

Let X be a compact metric space. Let (f_n) be a pointwise bounded equicontinuous sequence. Then (f_n) has a subsequence converging uniformly to some $f \in C(X)$.

Remark

It is interesting to note that a uniformly convergent sequence in C(X) is necessarily uniformly bounded (by a homework problem). Hence our pointwise bounded equicontinuous sequence above must actually be uniformly bounded.

Lemma

Suppose that (X, ρ) is compact and that $\mathcal{F} \subset C(X)$ is equicontinuous on X. Then \mathcal{F} is uniformly equicontinuous in that for all $\epsilon > 0$ there is a δ such that $\rho(x, y) < \delta$ implies that $|f(x) - f(y)| < \epsilon$ for all $f \in \mathcal{F}$.

Proof.

We will leave this as a homework exercise—see the proof that continuous functions on compact spaces are necessarily uniformly continuous.

Proof of the AA Theorem.

Since compact metric spaces are separable, the AA Lemma applies and we can assume (f_n) has a subsequence (f_{n_k}) such that $f_{n_k}(x) \to f(x)$ for all $x \in X$ and some function f on X. To ease the notational burden, there is no harm in replacing (f_n) with this subsequence so that $f_n(x) \to f(x)$ for all $x \in X$. In particular, we can assume $(f_n(x))$ is Cauchy for all $x \in X$. Since C(X) is complete, we just have to show that (f_n) is uniformly Cauchy. That is, given $\epsilon > 0$, we want to find N such that $n, m \ge N$ implies

$$|f_n(x) - f_m(x)| < \epsilon$$
 for all $x \in X$.

Proof Continued.

By uniform equicontinuity, there is a $\delta > 0$ such that $\rho(x, y) < \delta$ implies that $|f_n(x) - f_n(y)| < \epsilon/3$ for all $n \ge 1$. Since X is totally bounded, there are $x_1, \ldots, x_n \in X$ such that $\{B_{\delta}(x_j)\}_{j=1}^n$ covers X. Then there is a N such that $n, m \ge N$ implies $|f_n(x_j) - f_m(x_j)| < \epsilon/3$ for all $1 \le j \le n$. Now if $x \in X$ and $n, m \ge N$, there is a j such that $x \in B_{\delta}(x_j)$. Then

$$\begin{aligned} |f_n(x) - f_m(x)| &\leq |f_n(x) - f_n(x_j)| + |f_n(x_j) - f_m(x_j)| \\ &+ |f_m(x_j) - f_m(x)| \\ &\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{aligned} \qquad \Box$$

- Definitely time for a break.
- Questions?
- Start recording again.

Corollary

Let X be a compact metric space. Suppose that $\mathcal{F} \subset C(X)$ be closed in C(X) as well as equicontinuous on X and pointwise bounded. Then \mathcal{F} is a compact subset of C(X). In particular, \mathcal{F} is uniformly bounded.

Proof.

It suffices to see that \mathcal{F} is sequentially compact. Let (f_n) be a sequence in \mathcal{F} . By the AA-Theorem, (f_n) has a uniformly convergent subsequence (f_{n_k}) . Since \mathcal{F} is closed, $f = \lim_k f_{n_k} \in \mathcal{F}$. Hence \mathcal{F} is compact.

Since \mathcal{F} is compact in C(X), it must be bounded (with respect to the metric induced from $\|\cdot\|_{\infty}$). Hence \mathcal{F} is uniformly bounded.

Theorem

Suppose that (X, ρ) is a compact metric space. Then $\mathcal{F} \subset C(X)$ is compact if and only if \mathcal{F} is closed, uniformly bounded, and equicontinuous.

Proof.

(<=): This direction follows from the Corollary. In fact, we can replace uniformly bounded with pointwise bounded.

Proof.

 (\Longrightarrow) : Now we assume that \mathcal{F} is compact. Then \mathcal{F} is closed in C(X) (this is a homework exercise). Furthermore, \mathcal{F} must be bounded in C(X) and therefore uniformly bounded. The real issue here is to see that \mathcal{F} is equicontinuous. Assume to the contrary that \mathcal{F} is not equicontinuous at $x \in X$. That means the statement

$$orall \epsilon > 0, \exists \delta > 0, ext{s.t.} \
ho(x,y) < \delta \Longrightarrow |f(x) - f(y)| < \epsilon \ orall f \in \mathcal{F}$$

is false. Hence there is a $\epsilon_0 > 0$ such that for all $\delta > 0$, the above implication is false. Hence for all $n \ge 1$ there is a $x_n \in X$ and $f_n \in \mathcal{F}$ such that $\rho(x_n, x) < \frac{1}{n}$ and

$$|f_n(x_n)-f_n(x)|\geq \epsilon_0.$$

Proof

Proof Continued.

But \mathcal{F} is compact, so (f_n) has a convergent subsequence (f_{n_k}) converging uniformly to $f \in C(X)$. Since f is continuous, $f(x_{n_k}) \to f(x)$. Furthermore there is a N such that $k \ge N$ implies $\|f_{n_k} - f\|_{\infty} < \epsilon_0/3$. Then

$$\begin{aligned} f(x_{n_k}) - f(x)| &= |f(x_{n_k}) - f_{n_k}(x_{n_k}) + f_{n_k}(x_{n_k}) - f_{n_k}(x) \\ &+ f_{n_k}(x) - f(x)| \\ &\geq |f_{n_k}(x) - f_{n_k}(x_{n_k})| \\ &- |f(x_{n_k}) - f_{n_k}(x_{n_k}) + f_{n_k}(x) - f(x)| \\ &\geq \epsilon_0 - \left(\frac{\epsilon_0}{3} + \frac{\epsilon_0}{3}\right) = \frac{\epsilon_0}{3} > 0 \end{aligned}$$

But this eventually contradicts $f(x_{n_k}) \rightarrow f(x)$.

- Definitely time for a break.
- Questions?
- Start recording again.

Definition

A metric space is called a Baire space if the countable interection of open dense sets is dense. That is, if O_n is open and dense in X for all $n \ge 1$, then

 ∞

is dense in X.

Remark

This is a purely topological property. If ρ and σ are equivalent metrics on X, then (X, ρ) is Baire if and only if (X, σ) is Baire.

Definition

If E is a subspace of a metric space X, then the interior of E is

$$\mathsf{Int}(E) = \bigcup \{ \ U \subset X : U \subset E \text{ and } U \text{ is open in } X \}.$$

Remark

The interior Int(E) is the largest open set in X contained in E.

Example

Viewed as a subset of **R**, $Int(\mathbf{Q}) = \emptyset$. Let E = [0, 1). Then in **R**, Int(E) = (0, 1). But viewed as a subset of X = [0, 1], then Int(E) = E.

Lemma

A metric space X is Barie if and only if given countably many closed sets $\{F_n\}_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} F_n$ has nonempty interior in X, then at least one of the F_n has nonempty interior.

Proof.

Note that a closed set F_n has nonempty interior if and only if $O_n = X \setminus F_n$ is open and dense. Furthermore, $X \setminus \bigcup F_n = \bigcap O_n$. Thus if $\bigcup F_n$ has interior, $\bigcap O_n$ is not dense.

Suppose that X is Baire. Let $\{F_n\}$ be such that $\bigcup F_n$ has interior. If each F_n has empty interior, then each O_n is dense and $\bigcap O_n$ would be dense. This contradicts our assumption on $\bigcup F_n$. Hence some F_n has interior as required.

On the other hand, suppose that X has the property described in the statement of the lemma. Suppose that X is not Baire. Then there are dense open sets O_n such that $\bigcap O_n$ is not dense. But then $\bigcup F_n$ has interior. Hence one of the F_n has interior and the corresponding O_n would not be dense. This contradicts our assumptions and completes the proof.

Definition

A point in a metric space X is called isolated is $\{x\}$ is open in X.

Example

The subspace $\pmb{Z} \subset \pmb{R}$ consists entirely of isolated points. The interval [0,1] has no isolated points.

Lemma

Let X be a Baire space without isolated points. Then X is uncountable.

Proof.

Suppose that $X = \{x_n\}_{n=1}^{\infty}$. Let $F_n = \{x_n\}$ so that each F_n is closed $X = \bigcup F_n$. Since X is open, the union has interior and hence some F_n has interior. But then $\{x_n\}$ is open and x_n is isolated.

Theorem (Baire Category Theorem)

Every complete metric space is a Baire space.

Remark

This applies to any metric space that admits an equivalent complete metric or to any metric space homeomorphic to a complete metric space. For example, (0,1) is homeomorphic to **R**. Hence it is a Baire space in its standard topology.

• That is enough for now.