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Getting Started

We should be recording!

This a good time to ask questions about the previous lecture,
complain, or tell a story.

As I mentioned, I hope that you have the bandwidth to keep
your video on during the class meeting. This makes it seem a
little more “real” for me. But this is voluntary.

I am still fighting with gradescope. For today’s assignment,
please upload it directly to canvas.
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Separable Spaces

Definition

A metric space X is called separable if it has a countable dense subset.

Example

Note that Rn and Cn are separable. In fact, `p is separable for all
1 ≤ p <∞. However, `∞ is not separable.

Proof.

To see that `p is separable, consider the set D ′ of sequences taking
values in Q + iQ and which are eventually zero. To see the `∞ can’t be
separable, notice that for each A ⊂ N, let xA be the sequence such that
xA(k) = 1 if and only if k ∈ A. Then E = { xA ∈ `∞ : A ∈ P(N) } is
uncountable and A 6= B implies ‖xA − xB‖∞ = 1. Thus the balls B 1

2
(xA)

form an uncountable set of disjoint open balls. If D is dense, then D
must meet every such ball and be uncountable.
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Subsequences

Given a sequence (xn), a subsequence is determined by
choosing { nk } ⊂ N such that nk < nk+1 for all k . Then our
subsequence is (xnk )∞k=1.

To get a subsubsequence, we need { kj } ⊂ N such that
kj < kj+1. Then we get (xnkj )

∞
j=1. Clearly this is ugly and hard

to grock even in LATEX.

Sometimes it is profitable to realize that a subsequence is
determined by an infinite subset
S1 = { n1 < n2 < n3 < · · · } ⊂ N.

Then a subsubsequence is determined by choosing an infinite
subset S2 ⊂ S1: then S2 = { nk1 < nk2 < · · · }. This makes it
clear that a subsubsequence is actually a subsequence.
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Notation

Remark

If S1 = { n1 < n2 < · · · } determines a subsequence (xnk ), then we
can write

lim
n∈S1

xn = a or (xn)n∈S1 → a

is place of the old standby lim
k→∞

xnk = a. You should convince

yourself that lim
n∈S1

xn = a if and only if for all ε > 0 there is a N

such that n ≥ N and n ∈ S1 implies that ρ(xn, a) < ε.

Lemma

Let (xn) be a sequence in a metric space X and let S1 be an
infinite subset of N as above. Suppose that S2 is an infinite subset
of N such that { n ∈ S2 : n /∈ S1 } is finite. Then if lim

n∈S1
xn = a, we

also have lim
n∈S2

xn = a.
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The Lemma

Theorem (Arzelà–Ascoli Lemma)

Suppose that X is a separable metric space. Let (fn) be a
pointwise bounded equicontinuous sequence in C (X ). Then (fn)
has a subsequence (fnk ) such that lim

k→∞
fnk (x) exists for all x ∈ X .

Proof.

Let D = { xi }∞i=1 be (countable) dense subset of X . By
assumption,

(
fn(x1)

)
n∈N is a bounded sequence of complex

numbers. Hence it has a convergent sequence determined by an
infinite subset S1 ⊂ N. Let a1 = lim

n∈S1
fn(x1). But

(
fn(x2)

)
n∈S1

is

also bounded. Hence there is an infinite subset S2 ⊂ S1 such that
lim
n∈S2

fn(x2) = a2. Furthermore, lim
a∈S2

fn(x1) = a1!
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Proof

Proof Continued.

Continuing inductively we get Sk+1 ⊂ Sk such that

lim
m∈Sk+1

fn(xj) = aj for all 1 ≤ j ≤ k + 1

Let rk be the kth-term in Sk . Let S = { rk }∞k=1. Note that there
are at most k − 1 terms in S not in Sk . Thus by our sequence
lemma,

lim
n∈S

fn(xj) = aj for all j .

At this point, we can replace (fn)n∈N by (fn)n∈S and assume from
here on that

lim
n∈N

fn(xj) = aj for all xj ∈ D.
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Proof

Proof Continued.

Let x0 ∈ X . Since x0 is arbitrary, it will suffice to prove that(
fn(x0)

)
is Cauchy. Fix ε > 0. Since (fn) is equicontinuous at x0,

there is a δ > 0 such that ρ(x , x0) < δ implies
|fn(x)− fn(x0)| < ε/3 for all n ≥ 1. Since D is dense in X , there is
a j such that ρ(xj , x0) < δ. Since

(
fn(xj)

)
is convergent, it is

Cauchy. Hence there is a N such that n,m ≥ N implies that
|fn(xj)− fm(xj)| < ε/3. Now if n,m ≥ N, we have

|fn(x0)− fm(x0)| ≤ |fn(x0)− fn(xj)|+ |fn(xj)− fm(xj)|+
|fm(xj)− fm(x0)|

<
ε

3
+
ε

3
+
ε

3
= ε.
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The Theorem

Remark

Suppose that X is a compact metric space. Then C (X ) = Cb(X )
is a complete metric space with respect to the uniform norm.
Moreover, by a homework problem, X is separable and we can
apply the Arzelà–Ascoli lemma to C (X ).

Theorem (The Arzelà–Ascoli Theorem)

Let X be a compact metric space. Let (fn) be a pointwise bounded
equicontinuous sequence. Then (fn) has a subsequence converging
uniformly to some f ∈ C (X ).

Remark

It is interesting to note that a uniformly convergent sequence in
C (X ) is necessarily uniformly bounded (by a homework problem).
Hence our pointwise bounded equicontinuous sequence above must
actually be uniformly bounded.
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Preliminary Result

Lemma

Suppose that (X , ρ) is compact and that F ⊂ C (X ) is
equicontinuous on X . Then F is uniformly equicontinuous in that
for all ε > 0 there is a δ such that ρ(x , y) < δ implies that
|f (x)− f (y)| < ε for all f ∈ F .

Proof.

We will leave this as a homework exercise—see the proof that
continuous functions on compact spaces are necessarily uniformly
continuous.
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The Proof

Proof of the AA Theorem.

Since compact metric spaces are separable, the AA Lemma applies
and we can assume (fn) has a subsequence (fnk ) such that
fnk (x)→ f (x) for all x ∈ X and some function f on X . To ease
the notational burden, there is no harm in replacing (fn) with this
subsequence so that fn(x)→ f (x) for all x ∈ X . In particular, we
can assume

(
fn(x)

)
is Cauchy for all x ∈ X . Since C (X ) is

complete, we just have to show that (fn) is uniformly Cauchy. That
is, given ε > 0, we want to find N such that n,m ≥ N implies

|fn(x)− fm(x)| < ε for all x ∈ X .
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Proof

Proof Continued.

By uniform equicontinuity, there is a δ > 0 such that ρ(x , y) < δ
implies that |fn(x)− fn(y)| < ε/3 for all n ≥ 1. Since X is totally
bounded, there are x1, . . . , xn ∈ X such that {Bδ(xj) }nj=1 covers
X . Then there is a N such that n,m ≥ N implies
|fn(xj)− fm(xj)| < ε/3 for all 1 ≤ j ≤ n. Now if x ∈ X and
n,m ≥ N, there is a j such that x ∈ Bδ(xj). Then

|fn(x)− fm(x)| ≤ |fn(x)− fn(xj)|+ |fn(xj)− fm(xj)|
+ |fm(xj)− fm(x)|

<
ε

3
+
ε

3
+
ε

3
= ε.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Compactness

Corollary

Let X be a compact metric space. Suppose that F ⊂ C (X ) be
closed in C (X ) as well as equicontinuous on X and pointwise
bounded. Then F is a compact subset of C (X ). In particular, F is
uniformly bounded.

Proof.

It suffices to see that F is sequentially compact. Let (fn) be a
sequence in F . By the AA-Theorem, (fn) has a uniformly
convergent subsequence (fnk ). Since F is closed, f = limk fnk ∈ F .
Hence F is compact.

Since F is compact in C (X ), it must be bounded (with respect to
the metric induced from ‖ · ‖∞). Hence F is uniformly
bounded.
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Compactness Theorem

Theorem

Suppose that (X , ρ) is a compact metric space. Then F ⊂ C (X )
is compact if and only if F is closed, uniformly bounded, and
equicontinuous.

Proof.

(⇐=): This direction follows from the Corollary. In fact, we can
replace uniformly bounded with pointwise bounded.
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The Converse

Proof.

(=⇒): Now we assume that F is compact. Then F is closed in
C (X ) (this is a homework exercise). Furthermore, F must be
bounded in C (X ) and therefore uniformly bounded. The real issue
here is to see that F is equicontinuous. Assume to the contrary
that F is not equicontinuous at x ∈ X . That means the statement

∀ε > 0, ∃δ > 0, s.t. ρ(x , y) < δ =⇒ |f (x)− f (y)| < ε ∀f ∈ F

is false. Hence there is a ε0 > 0 such that for all δ > 0, the above
implication is false. Hence for all n ≥ 1 there is a xn ∈ X and
fn ∈ F such that ρ(xn, x) < 1

n and

|fn(xn)− fn(x)| ≥ ε0.
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Proof

Proof Continued.

But F is compact, so (fn) has a convergent subsequence (fnk )
converging uniformly to f ∈ C (X ). Since f is continuous,
f (xnk )→ f (x). Furthermore there is a N such that k ≥ N implies
‖fnk − f ‖∞ < ε0/3. Then

|f (xnk )− f (x)| = |f (xnk )− fnk (xnk ) + fnk (xnk )− fnk (x)

+ fnk (x)− f (x)|
≥ |fnk (x)− fnk (xnk )|

− |f (xnk )− fnk (xnk ) + fnk (x)− f (x)|

≥ ε0 −
(ε0

3
+
ε0
3

)
=
ε0
3
> 0

But this eventually contradicts f (xnk )→ f (x).
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Baire Spaces

Definition

A metric space is called a Baire space if the countable interection
of open dense sets is dense. That is, if On is open and dense in X
for all n ≥ 1, then

∞⋂
n=1

On

is dense in X .

Remark

This is a purely topological property. If ρ and σ are equivalent
metrics on X , then (X , ρ) is Baire if and only if (X , σ) is Baire.
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Interiors

Definition

If E is a subspace of a metric space X , then the interior of E is

Int(E ) =
⋃
{U ⊂ X : U ⊂ E and U is open in X }.

Remark

The interior Int(E ) is the largest open set in X contained in E .

Example

Viewed as a subset of R, Int(Q) = ∅. Let E = [0, 1). Then in R,
Int(E ) = (0, 1). But viewed as a subset of X = [0, 1], then
Int(E ) = E .
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An Equivalent Formulation

Lemma

A metric space X is Barie if and only if given countably many
closed sets {Fn }∞n=1 such that

⋃∞
n=1 Fn has nonempty interior in

X , then at least one of the Fn has nonempty interior.
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Proof of the Lemma

Proof.

Note that a closed set Fn has nonempty interior if and only if
On = X \ Fn is open and dense. Furthermore, X \

⋃
Fn =

⋂
On.

Thus if
⋃
Fn has interior,

⋂
On is not dense.

Suppose that X is Baire. Let {Fn } be such that
⋃

Fn has interior.
If each Fn has empty interior, then each On is dense and

⋂
On

would be dense. This contradicts our assumption on
⋃
Fn. Hence

some Fn has interior as required.

On the other hand, suppose that X has the property described in
the statement of the lemma. Suppose that X is not Baire. Then
there are dense open sets On such that

⋂
On is not dense. But

then
⋃
Fn has interior. Hence one of the Fn has interior and the

corresponding On would not be dense. This contradicts our
assumptions and completes the proof.
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A Curiosity

Definition

A point in a metric space X is called isolated is { x } is open in X .

Example

The subspace Z ⊂ R consists entirely of isolated points. The
interval [0, 1] has no isolated points.

Lemma

Let X be a Baire space without isolated points. Then X is
uncountable.

Proof.

Suppose that X = { xn }∞n=1. Let Fn = { xn } so that each Fn is
closed X =

⋃
Fn. Since X is open, the union has interior and

hence some Fn has interior. But then { xn } is open and xn is
isolated.
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Next Time

Theorem (Baire Category Theorem)

Every complete metric space is a Baire space.

Remark

This applies to any metric space that admits an equivalent
complete metric or to any metric space homeomorphic to a
complete metric space. For example, (0, 1) is homeomorphic to R.
Hence it is a Baire space in its standard topology.
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That’s Enough for Today

That is enough for now.
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