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Getting Started

We should be recording!

This a good time to ask questions about the previous lecture,
complain, or tell a story.

I hope that you have the bandwidth to keep your video on
during the class meeting.

Since Monday is part of Yom Kippur, we will cancel lecture on
Monday (September 28th).
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Last Time

Recall that a metric space is Baire if the countable
intersection of open dense sets is dense.

Equivalently, a metric space is Baire if whenever the countable
union of closed sets has interior, then at least one of the
closed sets has interior.

Our first goal today is to prove . . .

Theorem (Baire Category Theorem)

Every complete metric space is a Baire space.

Dana P. Williams Math 73/103: Fall 2020 Lecture 6



Preliminary Result

Lemma

Suppose that U is open in a metric space (X , ρ) and that x0 ∈ U.
Then there is a δ > 0 such that Bδ(x0) ⊂ U.

Proof.

Since U is open, there is a δ > 0 such that B2δ(x0) ⊂ U. If
x ∈ Bδ(x0), then there is a sequence (xn) ⊂ Bδ(x0) such that
xn → x . But then ρ(xn, x0)→ ρ(x , x0). (Why?) This means
ρ(x , x0) ≤ δ. Therefore Bδ(x0) ⊂ B2δ(x0) ⊂ U as required.
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Proof

Proof of the Baire Category Theorem.

Suppose that On is open and dense in X for all n ≥ 1. Fix x0 ∈ X
and r0 > 0. It will suffice to show that

Br0(x0) ∩
∞⋂
n=1

On 6= ∅.

Since O1 is dense, Br0(x0)∩O1 6= ∅. Hence using our lemma, there
is a 0 < r1 < 1 and x1 ∈ X such that Br1(x1) ⊂ Br0(x0) ∩ O1.

But Br1(x1) ∩ O2 6= ∅ and there is 0 < r2 <
1
2 and x2 such that

Br2(x2) ⊂ Br1(x1) ∩ O2.
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Proof

Proof Continued.

Continuing inductively, we get a sequence (xn) in X and (rn) in
(0,∞) such that 0 < rn <

1
n and

Brn+1(xn+1) ⊂ Brn(xn) ∩ On+1.

Let Fn = Brn(xn). Then Fn+1 ⊂ Fn ∩ On+1 ⊂ Fn and
diam(Fn)↘ 0. Since X is complete, it has the nested set property,
and there is a y0 ∈ X such that { y0 } =

⋂
Fn.

Note that y0 ∈ F1 ⊂ Br0(x0) and y0 ∈
⋂
On.

This completes the proof.
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Examples

Since [0, 1] is complete and has no isolated points, it must be
uncountable.

Let X = R2 and Lm the line y = mx . Then Om = R2 \ Lm is
open and dense in the complete metric space R2. Hence
C =

⋂
r∈QOr = R2 \

⋃
Lr is dense in R2. Can you show that

C is necessarily uncountable?
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The Boundary of a Set

Definition

If X is a metric space and E ⊂ X , then we say that x ∈ X is a
boundary point of E if Br (x) meets both E and X \ E for all
r > 0. The set of boundary points of E is denoted by ∂E .

Example

If E = [0, 1) ⊂ R, then ∂E = { 0, 1 }. On the other hand, if
E = Q ⊂ R, then ∂Q = R.

Lemma

If X is a metric space and E ⊂ X , then ∂E is closed. If in
addition, E is closed, then ∂E has empty interior.

Proof.

We will leave this as homework.
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Boundaries Again

Proposition

Let {Fn }∞n=1 be a countable collection of closed sets in a complete
metric space X . Then

⋃∞
n=1 ∂Fn has empty interior. In particular,

X \
⋃
∂Fn is dense.

Proof.

Since ∂Fn has empty interior for all n, this result follows
immediately from the Baire Category Theorem and our
characterization of Baire spaces in terms of closed sets. Since
X \

⋃
∂Fn =

⋂
X \ ∂Fn, the latter is dense since each X \ ∂Fn is

open and dense.
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License Agreement

Remark

Your analyst license requires that you know that that uniform limit
of continuous functions is necessarily continuous. You also should
have a ready example to show that this can fail if we only have
pointwise convergence. But we can use the above result to see
that the pointwise limit of continuous real-valued functions is
nevertheless continuous on a dense subset.
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A Fun Theorem

Theorem (Royden & Fitzpatrick §10.2.7)

Suppose that X is a complete metric space. Let (fn) ⊂ C (X )
converge pointwise to f : X → C. Then there is a dense set
D ⊂ X such that f is continuous at each point x ∈ D.

Remark

Royden & Fitzpatrick’s proof will first show a stronger statement
that F = { fn } is equicontinuous on D. This will imply that f is
continuous on D. But to me, the continuity on D is the interesting
bit.
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The Proof

Proof.

For n,m ∈ N, let

E (m, n) =
⋂

j ,k≥n
{ x ∈ X : |fj(x)− fk(x)| ≤ 1

m
}

= { x ∈ X : |fj(x)− fk(x)| ≤ 1

m
for all j , k ≥ n }.

Note that E (m, n) is closed. As we just observed, it follows that

D := X \
( ⋃
n,m∈N

∂E (n,m)
)

is dense in X . Furthermore, if x ∈ D ∩ E (m, n), then x is in the
the interior of E (m, n).
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Proof

Proof Continued.

We want to show that (fn) is equicontinuous on D. Let x0 ∈ D
and fix ε > 0. Let m ∈ N be such that 0 < 1

m < ε
4 . Since (fn(x0))

converges, it is Cauchy. Let N ∈ N be such that j , k ≥ N implies
|fj(x0)− fk(x0)| ≤ 1

m . Then x0 ∈ E (m,N). As observed on the
previous slide, we must have x0 in the interior of E (m,N). Hence
there is a r > 0 such that Br (x0) ⊂ E (m,N). Thus

|fj(x)− fk(x)| ≤ 1

m
for all j , k ≥ N and x ∈ Br (x0).

Since fN is continuous, we can find 0 < δ < r so that

|fN(x)− fN(x0)| < 1

m
if x ∈ Bδ(x0).

return
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proof

Proof Continued.

Now if j ≥ N and x ∈ Bδ(x0), we have

|fj(x)− fj(x0)| ≤ |fj(x)− fN(x)|+ |fN(x)− fN(x0)|+ |fN(x0)− f (x0)|

which, in view of the last slide, is

≤ 1

m
+

1

m
+

1

m
=

3

m
<

3

4
ε.

Since each fj with 1 ≤ j < N is continuous, we can shrink δ is necessary
so that |fj(x)− fj(x0)| < 3

4ε for all j provided x ∈ Bδ(x0). Hence (fn) is
equicontinuous at x0. But now if x ∈ Bδ(x0), we have

|f (x)− f (x0)| = lim
j
|fj(x)− fj(x0)| ≤ 3

4
ε < ε.

Therefore f is continuous at x0. Since x0 ∈ D was arbitrary, we are
done.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Back to Calculus

Let’s consider the complete metric space C
(
[0, 1],R

)
. We’ve been

working over C, but there is no harm in restricting to real-valued
functions. If you insist, C

(
[0, 1],R

)
is a closed metric subspace of

C ([0, 1]). Then if f ∈ C
(
[0, 1],R

)
, we can define

D+f (x) = lim
h↘0

f (x + h)− f (x)

h

provided the limit exists and x ∈ [0, 1). Similarly, let

D−f (x) = lim
h↗0

f (x + h)− f (x)

h

provided the limit exists and x ∈ (0, 1]. Note that f is
differentiable at x ∈ (0, 1) if and only if both limits exist and
f ′(x) = D+f (x) = D−f (x). We say that f is nowhere
differentiable if f ′(x) fails to exist for all x ∈ [0, 1] (where
f ′(0) = D+f (0) and f ′(1) = D−f (1)).
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Big Theorem

Theorem

There is a nowhere differentiable function in C
(
[0, 1],R

)
. In fact,

the collection of nowhere differentiable functions in C
(
[0, 1],R

)
is

dense in the uniform norm.
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Lemma 1

Lemma

Suppose that f ∈ C
(
[0, 1],R

)
and f ′(x0) exists for some

x0 ∈ [0, 1]. Then there is a n ∈ N such that

|f (x)− f (x0)| ≤ n|x − x0| for all x ∈ [0, 1].

return

Proof.

Since f is continuous and [0, 1] is compact, there is a M > 0 such
that |f (x)| ≤ M for all x ∈ [0, 1]. But there is a δ > 0 such that

x ∈ [0, 1] and 0 < |x − x0| ≤ δ implies
∣∣∣ f (x)−f (x0)x−x0

∣∣∣ ≤ |f ′(x0)|+ 1.

But if |x − x0| ≥ δ and x ∈ [0, 1], then
∣∣∣ f (x)−f (x0)x−x0

∣∣∣ ≤ 2M
δ . Hence

we can take n ∈ N such that n ≥ max{ |f ′(x0)|+ 1, 2Mδ }.
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The Fn’s

Definition

For each n ∈ N let Fn be the set of f ∈ C
(
[0, 1],R

)
such that

there is a xf ∈ [0, 1] such that |f (x)− f (xf )| ≤ n|x − xf | for all
x ∈ [0, 1].

Lemma

Each Fn is closed in C
(
[0, 1],R

)
. Moreover, if f ∈ C

(
[0, 1],R

)
is

differentiable at at least one point, then f ∈
⋃∞

n=1Fn
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Preliminary Result

The observation will be useful in proving the lemma and is of some
interest on its own.

Lemma

Suppose that (fn) ⊂ C
(
[0, 1],R

)
converges uniformly to

f ∈ C
(
[0, 1],R

)
. Then if xn → x in X we also have fn(xn)→ f (x).

Proof.

|fn(xn)− f (x)| ≤ |fn(xn)− f (xn)|+ |f (xn)− f (x)|.
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Proof of the Fn Lemma

Proof of the Lemma.

Suppose that (fn) ⊂ Fn and that fn → f in C
(
[0, 1],R

)
. Let

xn = xfn . Since [0, 1] is compact, we can find a subsequence
xnk → x0 in [0, 1]. Since fnk → f uniformly, the preliminary lemma
implies that fnk (xnk )→ f (x0). But then for all y ∈ [0, 1] we have

|f (y)− f (x0)| = lim
k
|fnk (y)− fnk (xnk )| ≤ lim

k
n|y − xnk |

= n|y − x0|.

Thus Fn is closed. The second assertion follows from a
previous lemma .
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Piecewise Linear Functions

A function in C
(
[0, 1],R

)
is called piecewise linear if there is a partition

P = { 0 = x0 < x1 < · · · < xn = 1 } of [0, 1] such that f is linear on each
[xk−1, xk ]. For example, consider

ϕ(x) =

{
2x if 0 ≤ x ≤ 1

2 , and

2− 2x if 1
2 ≤ x ≤ 1.

1

1
2

1

Note that if f is piecewise linear then D±f (x) exists for all x ∈ [0, 1]
(with appropriate caveats at 0 and 1). For example, |D±ϕ(x)| = 2 for all
x . The collection of piecewise linear functions is a vector subspace of
C
(
[0, 1],R

)
. We let PWn be the collection of piecewise linear functions

in C
(
[0, 1],R

)
for which |D±(f )(x)| ≥ n for all x ∈ [0, 1].

Example

Let ϕn(x) = 1
2nϕ(4nx). Then ϕn ∈ PW2n and ‖ϕn‖∞ ≤ 1

2n .
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Lemma 2

Lemma

Suppose that f ∈ C
(
[0, 1],R

)
and ε > 0. Then for all n ∈ N, there

is a g ∈ PWn such that ‖f − g‖∞ < ε.

Proof.

Since f is uniformly continuous, there is a m ∈ N such that
|x − y | < 1

m implies |f (x)− f (y)| < ε/2. Now let xi = i
m for

0 ≤ i ≤ m. Define g0 : [0, 1]→ R by

g0(λxi + (1− λ)xi+1) = λf (xi ) + (1− λ)f (xi+1)

for λ ∈ [0, 1] and 0 ≤ i ≤ m − 1. Then g0 is continuous and
piecewise linear on [0, 1] and is such that ‖f − g0‖∞ < ε/2.
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Proof

Proof Continued.

Since both D+g0 and D−g0 take only finitely many values, there is
a M such that |D±g0(x)| ≤ M for all x ∈ [0, 1]. Then there is a
k ∈ N such that 2k ≥ M + n and 2−k < ε

2 . Let g = g0 + ϕk .
Then g ∈ PWn and ‖f − g‖∞ < ε.
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Proof of the Theorem

Proof of the Theorem.

We have established that each Fn is closed. The lemma we just
proved implies that no Fn has interior. Therefore
On = C

(
[0, 1],R

)
\ Fn is open and dense. Then

C
(
[0, 1],R

)
\
( ∞⋃
n=1

Fn

)
=
∞⋂
n=1

On

is dense and consists of nowhere differentiable functions in
C
(
[0, 1],R

)
.
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That’s Enough for Today

That is enough for now.
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