Math 73/103: Fall 2020 Lecture 6

Dana P. Williams
Dartmouth College

September 25, 2020

Getting Started

- We should be recording!
- This a good time to ask questions about the previous lecture, complain, or tell a story.
- I hope that you have the bandwidth to keep your video on during the class meeting.
- Since Monday is part of Yom Kippur, we will cancel lecture on Monday (September 28th).

Last Time

- Recall that a metric space is Baire if the countable intersection of open dense sets is dense.
- Equivalently, a metric space is Baire if whenever the countable union of closed sets has interior, then at least one of the closed sets has interior.
- Our first goal today is to prove...

Theorem (Baire Category Theorem)

Every complete metric space is a Baire space.

Preliminary Result

Lemma

Suppose that U is open in a metric space (X, ρ) and that $x_{0} \in U$. Then there is a $\delta>0$ such that $\overline{B_{\delta}\left(x_{0}\right)} \subset U$.

Proof.

Since U is open, there is a $\delta>0$ such that $B_{2 \delta}\left(x_{0}\right) \subset U$. If $x \in \overline{B_{\delta}\left(x_{0}\right)}$, then there is a sequence $\left(x_{n}\right) \subset B_{\delta}\left(x_{0}\right)$ such that $x_{n} \rightarrow x$. But then $\rho\left(x_{n}, x_{0}\right) \rightarrow \rho\left(x, x_{0}\right)$. (Why?) This means $\rho\left(x, x_{0}\right) \leq \delta$. Therefore $\overline{B_{\delta}\left(x_{0}\right)} \subset B_{2 \delta}\left(x_{0}\right) \subset U$ as required.

Proof

Proof of the Baire Category Theorem.

Suppose that O_{n} is open and dense in X for all $n \geq 1$. Fix $x_{0} \in X$ and $r_{0}>0$. It will suffice to show that

$$
B_{r_{0}}\left(x_{0}\right) \cap \bigcap_{n=1}^{\infty} O_{n} \neq \emptyset .
$$

Since O_{1} is dense, $B_{r_{0}}\left(x_{0}\right) \cap O_{1} \neq \emptyset$. Hence using our lemma, there is a $0<r_{1}<1$ and $x_{1} \in X$ such that $\overline{B_{r_{1}}\left(x_{1}\right)} \subset B_{r_{0}}\left(x_{0}\right) \cap O_{1}$. But $B_{r_{1}}\left(x_{1}\right) \cap O_{2} \neq \emptyset$ and there is $0<r_{2}<\frac{1}{2}$ and x_{2} such that $\overline{B_{r_{2}}\left(x_{2}\right)} \subset B_{r_{1}}\left(x_{1}\right) \cap O_{2}$.

Proof

Proof Continued.

Continuing inductively, we get a sequence $\left(x_{n}\right)$ in X and $\left(r_{n}\right)$ in $(0, \infty)$ such that $0<r_{n}<\frac{1}{n}$ and

$$
\overline{B_{r_{n+1}}\left(x_{n+1}\right)} \subset B_{r_{n}}\left(x_{n}\right) \cap O_{n+1} .
$$

Let $F_{n}=\overline{B_{r_{n}}\left(x_{n}\right)}$. Then $F_{n+1} \subset F_{n} \cap O_{n+1} \subset F_{n}$ and $\operatorname{diam}\left(F_{n}\right) \searrow 0$. Since X is complete, it has the nested set property, and there is a $y_{0} \in X$ such that $\left\{y_{0}\right\}=\bigcap F_{n}$.
Note that $y_{0} \in F_{1} \subset B_{r_{0}}\left(x_{0}\right)$ and $y_{0} \in \bigcap O_{n}$.
This completes the proof.

Examples

- Since $[0,1]$ is complete and has no isolated points, it must be uncountable.
- Let $X=\mathbf{R}^{2}$ and L_{m} the line $y=m x$. Then $O_{m}=\mathbf{R}^{2} \backslash L_{m}$ is open and dense in the complete metric space \mathbf{R}^{2}. Hence $C=\bigcap_{r \in \mathbf{Q}} O_{r}=\mathbf{R}^{2} \backslash \bigcup L_{r}$ is dense in \mathbf{R}^{2}. Can you show that C is necessarily uncountable?

The Boundary of a Set

Definition

If X is a metric space and $E \subset X$, then we say that $x \in X$ is a boundary point of E if $B_{r}(x)$ meets both E and $X \backslash E$ for all $r>0$. The set of boundary points of E is denoted by ∂E.

Example

If $E=[0,1) \subset \mathbf{R}$, then $\partial E=\{0,1\}$. On the other hand, if $E=\mathbf{Q} \subset \mathbf{R}$, then $\partial \mathbf{Q}=\mathbf{R}$.

Lemma

If X is a metric space and $E \subset X$, then ∂E is closed. If in addition, E is closed, then ∂E has empty interior.

Proof.

We will leave this as homework.

Boundaries Again

Proposition

Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be a countable collection of closed sets in a complete metric space X. Then $\bigcup_{n=1}^{\infty} \partial F_{n}$ has empty interior. In particular, $X \backslash \bigcup \partial F_{n}$ is dense.

Proof.

Since ∂F_{n} has empty interior for all n, this result follows immediately from the Baire Category Theorem and our characterization of Baire spaces in terms of closed sets. Since $X \backslash \bigcup \partial F_{n}=\bigcap X \backslash \partial F_{n}$, the latter is dense since each $X \backslash \partial F_{n}$ is open and dense.

License Agreement

Remark

Your analyst license requires that you know that that uniform limit of continuous functions is necessarily continuous. You also should have a ready example to show that this can fail if we only have pointwise convergence. But we can use the above result to see that the pointwise limit of continuous real-valued functions is nevertheless continuous on a dense subset.

A Fun Theorem

Theorem (Royden \& Fitzpatrick §10.2.7)

Suppose that X is a complete metric space. Let $\left(f_{n}\right) \subset C(X)$ converge pointwise to $f: X \rightarrow \mathbf{C}$. Then there is a dense set $D \subset X$ such that f is continuous at each point $x \in D$.

Remark

Royden \& Fitzpatrick's proof will first show a stronger statement that $\mathcal{F}=\left\{f_{n}\right\}$ is equicontinuous on D. This will imply that f is continuous on D. But to me, the continuity on D is the interesting bit.

The Proof

Proof.

For $n, m \in \mathbf{N}$, let

$$
\begin{aligned}
E(m, n) & =\bigcap_{j, k \geq n}\left\{x \in X:\left|f_{j}(x)-f_{k}(x)\right| \leq \frac{1}{m}\right\} \\
& =\left\{x \in X:\left|f_{j}(x)-f_{k}(x)\right| \leq \frac{1}{m} \text { for all } j, k \geq n\right\} .
\end{aligned}
$$

Note that $E(m, n)$ is closed. As we just observed, it follows that

$$
D:=X \backslash\left(\bigcup_{n, m \in \mathbf{N}} \partial E(n, m)\right)
$$

is dense in X. Furthermore, if $x \in D \cap E(m, n)$, then x is in the the interior of $E(m, n)$.

Proof

Proof Continued.

We want to show that $\left(f_{n}\right)$ is equicontinuous on D. Let $x_{0} \in D$ and fix $\epsilon>0$. Let $m \in \mathbf{N}$ be such that $0<\frac{1}{m}<\frac{\epsilon}{4}$. Since $\left(f_{n}\left(x_{0}\right)\right)$ converges, it is Cauchy. Let $N \in \mathbf{N}$ be such that $j, k \geq N$ implies $\left|f_{j}\left(x_{0}\right)-f_{k}\left(x_{0}\right)\right| \leq \frac{1}{m}$. Then $x_{0} \in E(m, N)$. As observed on the previous slide, we must have x_{0} in the interior of $E(m, N)$. Hence there is a $r>0$ such that $B_{r}\left(x_{0}\right) \subset E(m, N)$. Thus

$$
\left|f_{j}(x)-f_{k}(x)\right| \leq \frac{1}{m} \quad \text { for all } j, k \geq N \text { and } x \in B_{r}\left(x_{0}\right)
$$

Since f_{N} is continuous, we can find $0<\delta<r$ so that

$$
\left|f_{N}(x)-f_{N}\left(x_{0}\right)\right|<\frac{1}{m} \quad \text { if } x \in B_{\delta}\left(x_{0}\right)
$$

proof

Proof Continued.

Now if $j \geq N$ and $x \in B_{\delta}\left(x_{0}\right)$, we have

$$
\left|f_{j}(x)-f_{j}\left(x_{0}\right)\right| \leq\left|f_{j}(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}\left(x_{0}\right)\right|+\left|f_{N}\left(x_{0}\right)-f\left(x_{0}\right)\right|
$$

which, in view of the last slide, is

$$
\leq \frac{1}{m}+\frac{1}{m}+\frac{1}{m}=\frac{3}{m}<\frac{3}{4} \epsilon
$$

Since each f_{j} with $1 \leq j<N$ is continuous, we can shrink δ is necessary so that $\left|f_{j}(x)-f_{j}\left(x_{0}\right)\right|<\frac{3}{4} \epsilon$ for all j provided $x \in B_{\delta}\left(x_{0}\right)$. Hence $\left(f_{n}\right)$ is equicontinuous at x_{0}. But now if $x \in B_{\delta}\left(x_{0}\right)$, we have

$$
\left|f(x)-f\left(x_{0}\right)\right|=\lim _{j}\left|f_{j}(x)-f_{j}\left(x_{0}\right)\right| \leq \frac{3}{4} \epsilon<\epsilon .
$$

Therefore f is continuous at x_{0}. Since $x_{0} \in D$ was arbitrary, we are done.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Back to Calculus

Let's consider the complete metric space $C([0,1], \mathbf{R})$. We've been working over \mathbf{C}, but there is no harm in restricting to real-valued functions. If you insist, $C([0,1], \mathbf{R})$ is a closed metric subspace of $C([0,1])$. Then if $f \in C([0,1], \mathbf{R})$, we can define

$$
D^{+} f(x)=\lim _{h \not 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists and $x \in[0,1)$. Similarly, let

$$
D^{-} f(x)=\lim _{h>0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists and $x \in(0,1]$. Note that f is differentiable at $x \in(0,1)$ if and only if both limits exist and $f^{\prime}(x)=D^{+} f(x)=D^{-} f(x)$. We say that f is nowhere differentiable if $f^{\prime}(x)$ fails to exist for all $x \in[0,1]$ (where $f^{\prime}(0)=D^{+} f(0)$ and $\left.f^{\prime}(1)=D^{-} f(1)\right)$.

Big Theorem

Theorem

There is a nowhere differentiable function in $C([0,1], \mathbf{R})$. In fact, the collection of nowhere differentiable functions in $C([0,1], \mathbf{R})$ is dense in the uniform norm.

Lemma

Suppose that $f \in C([0,1], \mathbf{R})$ and $f^{\prime}\left(x_{0}\right)$ exists for some $x_{0} \in[0,1]$. Then there is a $n \in \mathbf{N}$ such that

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq n\left|x-x_{0}\right| \quad \text { for all } x \in[0,1] .
$$

Proof.

Since f is continuous and $[0,1]$ is compact, there is a $M>0$ such that $|f(x)| \leq M$ for all $x \in[0,1]$. But there is a $\delta>0$ such that $x \in[0,1]$ and $0<\left|x-x_{0}\right| \leq \delta$ implies $\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right| \leq\left|f^{\prime}\left(x_{0}\right)\right|+1$. But if $\left|x-x_{0}\right| \geq \delta$ and $x \in[0,1]$, then $\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right| \leq \frac{2 M}{\delta}$. Hence we can take $n \in \mathbf{N}$ such that $n \geq \max \left\{\left|f^{\prime}\left(x_{0}\right)\right|+1, \frac{2 M}{\delta}\right\}$.

The \mathcal{F}_{n} 's

Definition

For each $n \in \mathbf{N}$ let \mathcal{F}_{n} be the set of $f \in C([0,1], \mathbf{R})$ such that there is a $x_{f} \in[0,1]$ such that $\left|f(x)-f\left(x_{f}\right)\right| \leq n\left|x-x_{f}\right|$ for all $x \in[0,1]$.

Lemma

Each \mathcal{F}_{n} is closed in $C([0,1], \mathbf{R})$. Moreover, if $f \in C([0,1], \mathbf{R})$ is differentiable at at least one point, then $f \in \bigcup_{n=1}^{\infty} \mathcal{F}_{n}$

Preliminary Result

The observation will be useful in proving the lemma and is of some interest on its own.

Lemma

Suppose that $\left(f_{n}\right) \subset C([0,1], \mathbf{R})$ converges uniformly to $f \in C([0,1], \mathbf{R})$. Then if $x_{n} \rightarrow x$ in X we also have $f_{n}\left(x_{n}\right) \rightarrow f(x)$.

Proof.

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right| \leq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(x)\right| .
$$

Proof of the \mathcal{F}_{n} Lemma

Proof of the Lemma.

Suppose that $\left(f_{n}\right) \subset \mathcal{F}_{n}$ and that $f_{n} \rightarrow f$ in $C([0,1], \mathbf{R})$. Let $x_{n}=x_{f_{n}}$. Since $[0,1]$ is compact, we can find a subsequence $x_{n_{k}} \rightarrow x_{0}$ in $[0,1]$. Since $f_{n_{k}} \rightarrow f$ uniformly, the preliminary lemma implies that $f_{n_{k}}\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$. But then for all $y \in[0,1]$ we have

$$
\begin{aligned}
\left|f(y)-f\left(x_{0}\right)\right| & =\lim _{k}\left|f_{n_{k}}(y)-f_{n_{k}}\left(x_{n_{k}}\right)\right| \leq \lim _{k} n\left|y-x_{n_{k}}\right| \\
& =n\left|y-x_{0}\right| .
\end{aligned}
$$

Thus \mathcal{F}_{n} is closed. The second assertion follows from a previous

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Piecewise Linear Functions

A function in $C([0,1], \mathbf{R})$ is called piecewise linear if there is a partition $P=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=1\right\}$ of $[0,1]$ such that f is linear on each [$\left.x_{k-1}, x_{k}\right]$. For example, consider

$$
\varphi(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq \frac{1}{2}, \text { and } \\ 2-2 x & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

Note that if f is piecewise linear then $D^{ \pm} f(x)$ exists for all $x \in[0,1]$ (with appropriate caveats at 0 and 1). For example, $\left|D^{ \pm} \varphi(x)\right|=2$ for all x. The collection of piecewise linear functions is a vector subspace of $C([0,1], \mathbf{R})$. We let PW_{n} be the collection of piecewise linear functions in $C([0,1], \mathbf{R})$ for which $\left|D^{ \pm}(f)(x)\right| \geq n$ for all $x \in[0,1]$.

Example

Let $\varphi_{n}(x)=\frac{1}{2^{n}} \varphi\left(4^{n} x\right)$. Then $\varphi_{n} \in \mathrm{PW}_{2^{n}}$ and $\left\|\varphi_{n}\right\|_{\infty} \leq \frac{1}{2^{n}}$.

Lemma 2

Lemma

Suppose that $f \in C([0,1], \mathbf{R})$ and $\epsilon>0$. Then for all $n \in \mathbf{N}$, there is a $g \in \mathrm{PW}_{n}$ such that $\|f-g\|_{\infty}<\epsilon$.

Proof.

Since f is uniformly continuous, there is a $m \in \mathbf{N}$ such that $|x-y|<\frac{1}{m}$ implies $|f(x)-f(y)|<\epsilon / 2$. Now let $x_{i}=\frac{i}{m}$ for $0 \leq i \leq m$. Define $g_{0}:[0,1] \rightarrow \mathbf{R}$ by

$$
g_{0}\left(\lambda x_{i}+(1-\lambda) x_{i+1}\right)=\lambda f\left(x_{i}\right)+(1-\lambda) f\left(x_{i+1}\right)
$$

for $\lambda \in[0,1]$ and $0 \leq i \leq m-1$. Then g_{0} is continuous and piecewise linear on $[0,1]$ and is such that $\left\|f-g_{0}\right\|_{\infty}<\epsilon / 2$.

Proof

Proof Continued.

Since both $D^{+} g_{0}$ and $D^{-} g_{0}$ take only finitely many values, there is a M such that $\left|D^{ \pm} g_{0}(x)\right| \leq M$ for all $x \in[0,1]$. Then there is a $k \in \mathbf{N}$ such that $2^{k} \geq M+n$ and $2^{-k}<\frac{\epsilon}{2}$. Let $g=g_{0}+\varphi_{k}$. Then $g \in \mathrm{PW}_{n}$ and $\|f-g\|_{\infty}<\epsilon$.

Proof of the Theorem

Proof of the Theorem.

We have established that each \mathcal{F}_{n} is closed. The lemma we just proved implies that no \mathcal{F}_{n} has interior. Therefore $O_{n}=C([0,1], \mathbf{R}) \backslash \mathcal{F}_{n}$ is open and dense. Then

$$
C([0,1], \mathbf{R}) \backslash\left(\bigcup_{n=1}^{\infty} \mathcal{F}_{n}\right)=\bigcap_{n=1}^{\infty} O_{n}
$$

is dense and consists of nowhere differentiable functions in $C([0,1], \mathbf{R})$.

That's Enough for Today

- That is enough for now.

