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Getting Started

We should be recording!

This a good time to ask questions about the previous lecture,
complain, or tell a story.

There was no lecture 7—we had Monday off—so I am calling
this lecture 8.

I will not be able to hold office hours tomorrow (Thursday)
from 10:30 to 11:30. Instead, we can use our x-hour 1:40 to
2:30.
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Fixed Points

Definition

A function f : X → X has a fixed point if there is a x0 ∈ X such
that f (x0) = x0.

Example

If V is a real or complex vector space, then a linear map
T : V → V always has 0V as a fixed point. Such a T has a
non-zero fixed point if and only if λ = 1 is an eigenvalue.
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Examples of Fixed Point Results

Example

1 The function f : R→ R given by f (x) = x + 1 has no fixed
points.

2 However, if f : [0, 1]→ [0, 1] is continuous, then I claim f
always has a fixed point.

3 Proof: Let g(x) = f (x)− x . Then g is continuous on [0, 1].
Furthermore g(0) ≥ 0 while g(1) ≤ 0. By the Intermediate
Value Theorem, there is a x0 ∈ [0, 1] such that g(x0) = 0.
The assertion follows.

4 The Brouwer Fixed Point Theorem gives the same result for
functions f : [0, 1]n → [0, 1]n (and much more), but the
techniques are not immediately accessible here.
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Lipschitz Mappings

Definition

A function f : (X , ρ)→ (X , ρ) is called Lipschtiz with Lipschitz constant
M if there is a M such that

ρ
(
f (x), f (y)

)
≤ Mρ(x , y) for all x , y ∈ X . (1)

If we can take M < 1 in (1), then we call f a contraction.

Example

Suppose that f : [a, b]→ [a, b] is continuous, and f ′(x) exists with
|f ′(x)| ≤ M for all x ∈ (a, b). Then by the Mean Value Theorem,
|f (x)− f (y)| ≤ M|x − y | for all x , y ∈ [a, b]. Hence f is Lipschitz with
constant M (for the usual metric on [a, b]).

Example

Note that we can have ρ
(
f (x), f (y)

)
< ρ(x , y) for all x , y ∈ X without f

being a contraction.
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Banach Contraction Principle

Theorem (Banach Contraction Principle)

Suppose (X , ρ) is a complete metric space and that f : (X , ρ)→ (X , ρ)
is a contraction. Then f has a unique fixed point.

Proof.

Suppose that M < 1 is such that ρ
(
f (x), f (y)

)
≤ Mρ(x , y) for x , y . Fix

x0 ∈ X . Let (xn) be the sequence such that x1 = f (x0) and for n ≥ 1 let
xn+1 := f (xn).

I claim that it will suffice to see that (xn) converges. To verify the claim,
suppose that xn → x . Then f (x) = limn f (xn) = limn xn+1 = x .
Therefore x is a fixed point for f . If y is another fixed point, then
ρ(x , y) = ρ

(
f (x), f (y)

)
≤ Mρ(x , y). Since M < 1, we must have

ρ(x , y) = 0 and hence x = y . Thus is will suffice to prove that (xn)
converges.
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Proof

Proof of the Claim.

Since X is complete, it will suffice to see that (xn) is Cauchy. Note
that ρ(xn+1, xn) = ρ

(
f (xn), f (xn−1)

)
≤ Mρ(xn, xn−1) for all n ≥ 1.

By an induction argument, ρ(xn+1, xn) ≤ Mnρ(x1, x0). Thus if
m > n, we have

ρ(xm, xn) ≤ ρ(xm, xm−1) + ρ(xm−1, xm−2) + · · ·+ ρ(xn+1, xn)

≤
(
Mm−1 + Mm−2 + · · ·+ Mn

)
ρ(x1, x0)

= Mn
(
Mm−n−1 + Mm−n−2 + · · ·+ 1

)
ρ(x1, x0)

= Mn 1−Mm−n

1−M
ρ(x1, x0)

≤ Mn 1

M − 1
ρ(x1, x0) =

Mn

1−M
ρ(x1, x0).

Since M < 1, Mn → 0. It follows that (xn) is Cauchy.
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Constructive

Remark

If you have an applied bent, then you should be very happy with
this proof. It actually provides a recipe for finding the fixed point!
You just pick your favorite x0 ∈ X , and apply f repeatedly.

Dana P. Williams Math 73/103: Fall 2020 Lecture 8



Break Time

Definitely time for a break.

Questions?

Start recording again.
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An Pretty Application

Remark

An first-order ordinary differential equation with initial conditions is
one of the form {

y ′ = g(x , y)

y(x0) = y0
(2)

for some point (x0, y0) ∈ R2. Of course this is shorthand asking for
a differentiable function y on an interval containing x0 such that
y(x0) = y0 and y ′(x) = g(x , y(x)) near x0. Of course, we want to
tell our students that (2) has a unique solution. Let’s see under
what circumstances it does.
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Sanity

Remark

A decent respect for our sanity suggests we want to restrict to the case
that g is continuous in a neighborhood U of (x0, y0) in R2 (with the
Euclidean metric coming from ‖ · ‖2). Since y(x) = 1/(1− x) is a
solution to {

y ′ = y2

y(0) = 1,

and since y “blows up” at x = 1, we see that we can’t hope to do better
that find a solution near x0 = 0. Furthermore, both y ≡ 0 and

y(x) =

{
0 if x ≤ 0, and

x2 if x ≥ 0

are solutions to

{
y ′ = 2

√
y

y(0) = 0.
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Fundamental Theorem of Calculus

When teaching an ODE course, we always start out with the simple
case where g(x , y) = h(x) for some continuous function h. Then
we can solve our initial value problem (IVP) the old fashioned way:

y(x) = y0 +

∫ x

x0

h(t) dt. (3)

The Fundamental Theorem of Calculus implies (3) provides a
solution and the Mean Value Theorem gives uniqueness.

We can upgrade this to observe that we can solve our general IVP
if we can find a function y : I → R defined on an interval I
containing x0 such that (x , y(x)) ∈ U for all x ∈ I and

y(x) = y0 +

∫ x

x0

g(t, y(t)) dt.
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Break Time

Definitely time for a break.

Questions?

Start recording again.
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Existence and Uniqueness

Theorem (The Picard Local Existence Theorem)

Let U be an open neighborhood of (x0, y0) ⊂ R2. Suppose that
g : U ⊂ R2 → R is continuous and such that there is a M > 0
such that∣∣g(x , y1)− g(x , y2)

∣∣ ≤ M|y1 − y2|for all (x , y1) and (x , y2) in U.

Then there is an open interval I such that x0 ∈ I and such that
there is unique differentiable function y : I → R such that
y(x0) = y0 and y ′(x) = g(x , y(x)) for all x ∈ I .
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Proof

Proof.

For all δ > 0, let Iδ = [x0 − δ, x0 + δ]. Since U is open, there are
positive numbers a and b such that the rectangle
R = [x0 − a, x0 + a]× [y0 − b, y0 + b] is contained in U. For each
δ > 0, let Xδ be the subspace of C (Iδ,R) of functions f such that
|f (x)− y0| ≤ b for all x ∈ Iδ. This just means that the graph of f
is in the rectangle Iδ × [y0 − b, y0 + b] ⊂ R ⊂ U. It is not hard to
check that Xδ is closed in C (Iδ,R). Define T : Xδ → C (Iδ,R) by

T (f )(x) = y0 +

∫ x

x0

g(t, f (t)) dt for x ∈ Iδ.

It will suffice to find a unique f such that T (f ) = f . Since Xδ is a
complete metric space, it will suffice to see that there is δ such
that T (Xδ) ⊂ Xδ and such that T : Xδ → Xδ is a contraction.
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Proof

Proof Continued.

Since R is compact, there is a K such that |g(x , y)| ≤ K for all
(x , y) ∈ R. Thus if f ∈ Xδ and x ∈ Iδ,

|T (f )(x)− y0| =
∣∣∣∫ x

x0

g(t, f (t)) dt
∣∣∣ ≤ δK

Hence T (Xδ) ⊂ Xδ provided δK ≤ b.
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Proof

Proof Continued.

On the other hand, our assumptions on g are such that if
f1, f2 ∈ Xδ and x ∈ Iδ, then

|g(x , f1(x))− g(x , f2(x))| ≤ M|f1(x)− f2(x)| ≤ M‖f1 − f2‖∞.

Therefore∣∣T (f1)(x)− T (f2)(x)
∣∣ =

∣∣∣∫ x

x0

[
g(t, f1(t))− g(t, f2(t))

]
dt
∣∣∣

≤ |x − x0|M|f1(t)− f2(t)| ≤ δM‖f1 − f2‖∞

Therefore ‖T (f1)− T (f2)‖∞ ≤ δM‖f1 − f2‖∞. Thus if we let
δ = min{ b/K , 12M }, then T (Xδ) ⊂ Xδ and T is a contraction.
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That’s Enough for Today

That is enough for now.
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