Math 73/103: Fall 2020 Lecture 8

Dana P. Williams
Dartmouth College

September 30, 2020

Getting Started

- We should be recording!
- This a good time to ask questions about the previous lecture, complain, or tell a story.
- There was no lecture 7-we had Monday off-so I am calling this lecture 8.
- I will not be able to hold office hours tomorrow (Thursday) from 10:30 to 11:30. Instead, we can use our x-hour 1:40 to 2:30.

Fixed Points

Definition

A function $f: X \rightarrow X$ has a fixed point if there is a $x_{0} \in X$ such that $f\left(x_{0}\right)=x_{0}$.

Example

If V is a real or complex vector space, then a linear map
$T: V \rightarrow V$ always has $\mathbf{0}_{V}$ as a fixed point. Such a T has a non-zero fixed point if and only if $\lambda=1$ is an eigenvalue.

Examples of Fixed Point Results

Example

(1) The function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=x+1$ has no fixed points.
(2) However, if $f:[0,1] \rightarrow[0,1]$ is continuous, then I claim f always has a fixed point.
(3) Proof: Let $g(x)=f(x)-x$. Then g is continuous on $[0,1]$. Furthermore $g(0) \geq 0$ while $g(1) \leq 0$. By the Intermediate Value Theorem, there is a $x_{0} \in[0,1]$ such that $g\left(x_{0}\right)=0$. The assertion follows.
(9) The Brouwer Fixed Point Theorem gives the same result for functions $f:[0,1]^{n} \rightarrow[0,1]^{n}$ (and much more), but the techniques are not immediately accessible here.

Lipschitz Mappings

Definition

A function $f:(X, \rho) \rightarrow(X, \rho)$ is called Lipschtiz with Lipschitz constant M if there is a M such that

$$
\begin{equation*}
\rho(f(x), f(y)) \leq M \rho(x, y) \quad \text { for all } x, y \in X \tag{1}
\end{equation*}
$$

If we can take $M<1$ in (1), then we call f a contraction.

Example

Suppose that $f:[a, b] \rightarrow[a, b]$ is continuous, and $f^{\prime}(x)$ exists with $\left|f^{\prime}(x)\right| \leq M$ for all $x \in(a, b)$. Then by the Mean Value Theorem, $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in[a, b]$. Hence f is Lipschitz with constant M (for the usual metric on $[a, b]$).

Example

Note that we can have $\rho(f(x), f(y))<\rho(x, y)$ for all $x, y \in X$ without f being a contraction.

Banach Contraction Principle

Theorem (Banach Contraction Principle)

Suppose (X, ρ) is a complete metric space and that $f:(X, \rho) \rightarrow(X, \rho)$ is a contraction. Then f has a unique fixed point.

Proof.

Suppose that $M<1$ is such that $\rho(f(x), f(y)) \leq M \rho(x, y)$ for x, y. Fix $x_{0} \in X$. Let $\left(x_{n}\right)$ be the sequence such that $x_{1}=f\left(x_{0}\right)$ and for $n \geq 1$ let $x_{n+1}:=f\left(x_{n}\right)$.
I claim that it will suffice to see that $\left(x_{n}\right)$ converges. To verify the claim, suppose that $x_{n} \rightarrow x$. Then $f(x)=\lim _{n} f\left(x_{n}\right)=\lim _{n} x_{n+1}=x$. Therefore x is a fixed point for f. If y is another fixed point, then $\rho(x, y)=\rho(f(x), f(y)) \leq M \rho(x, y)$. Since $M<1$, we must have $\rho(x, y)=0$ and hence $x=y$. Thus is will suffice to prove that $\left(x_{n}\right)$ converges.

Proof

Proof of the Claim.

Since X is complete, it will suffice to see that $\left(x_{n}\right)$ is Cauchy. Note that $\rho\left(x_{n+1}, x_{n}\right)=\rho\left(f\left(x_{n}\right), f\left(x_{n-1}\right)\right) \leq M \rho\left(x_{n}, x_{n-1}\right)$ for all $n \geq 1$. By an induction argument, $\rho\left(x_{n+1}, x_{n}\right) \leq M^{n} \rho\left(x_{1}, x_{0}\right)$. Thus if $m>n$, we have

$$
\begin{aligned}
\rho\left(x_{m}, x_{n}\right) & \leq \rho\left(x_{m}, x_{m-1}\right)+\rho\left(x_{m-1}, x_{m-2}\right)+\cdots+\rho\left(x_{n+1}, x_{n}\right) \\
& \leq\left(M^{m-1}+M^{m-2}+\cdots+M^{n}\right) \rho\left(x_{1}, x_{0}\right) \\
& =M^{n}\left(M^{m-n-1}+M^{m-n-2}+\cdots+1\right) \rho\left(x_{1}, x_{0}\right) \\
& =M^{n} \frac{1-M^{m-n}}{1-M} \rho\left(x_{1}, x_{0}\right) \\
& \leq M^{n} \frac{1}{M-1} \rho\left(x_{1}, x_{0}\right)=\frac{M^{n}}{1-M} \rho\left(x_{1}, x_{0}\right) .
\end{aligned}
$$

Since $M<1, M^{n} \rightarrow 0$. It follows that $\left(x_{n}\right)$ is Cauchy.

Constructive

Remark

If you have an applied bent, then you should be very happy with this proof. It actually provides a recipe for finding the fixed point! You just pick your favorite $x_{0} \in X$, and apply f repeatedly.

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

An Pretty Application

Remark

An first-order ordinary differential equation with initial conditions is one of the form

$$
\begin{cases}y^{\prime} & =g(x, y) \tag{2}\\ y\left(x_{0}\right) & =y_{0}\end{cases}
$$

for some point $\left(x_{0}, y_{0}\right) \in \mathbf{R}^{2}$. Of course this is shorthand asking for a differentiable function y on an interval containing x_{0} such that $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}(x)=g(x, y(x))$ near x_{0}. Of course, we want to tell our students that (2) has a unique solution. Let's see under what circumstances it does.

Sanity

Remark

A decent respect for our sanity suggests we want to restrict to the case that g is continuous in a neighborhood U of $\left(x_{0}, y_{0}\right)$ in \mathbf{R}^{2} (with the Euclidean metric coming from $\left.\|\cdot\|_{2}\right)$. Since $y(x)=1 /(1-x)$ is a solution to

$$
\begin{cases}y^{\prime} & =y^{2} \\ y(0) & =1\end{cases}
$$

and since y "blows up" at $x=1$, we see that we can't hope to do better that find a solution near $x_{0}=0$. Furthermore, both $y \equiv 0$ and

$$
y(x)= \begin{cases}0 & \text { if } x \leq 0, \text { and } \\ x^{2} & \text { if } x \geq 0\end{cases}
$$

are solutions to $\begin{cases}y^{\prime} & =2 \sqrt{y} \\ y(0) & =0 .\end{cases}$

When teaching an ODE course, we always start out with the simple case where $g(x, y)=h(x)$ for some continuous function h. Then we can solve our initial value problem (IVP) the old fashioned way:

$$
\begin{equation*}
y(x)=y_{0}+\int_{x_{0}}^{x} h(t) d t . \tag{3}
\end{equation*}
$$

The Fundamental Theorem of Calculus implies (3) provides a solution and the Mean Value Theorem gives uniqueness.

We can upgrade this to observe that we can solve our general IVP if we can find a function $y: I \rightarrow \mathbf{R}$ defined on an interval I containing x_{0} such that $(x, y(x)) \in U$ for all $x \in I$ and

$$
y(x)=y_{0}+\int_{x_{0}}^{x} g(t, y(t)) d t
$$

Break Time

- Definitely time for a break.
- Questions?
- Start recording again.

Existence and Uniqueness

Theorem (The Picard Local Existence Theorem)

Let U be an open neighborhood of $\left(x_{0}, y_{0}\right) \subset \mathbf{R}^{2}$. Suppose that $g: U \subset \mathbf{R}^{2} \rightarrow \mathbf{R}$ is continuous and such that there is a $M>0$ such that

$$
\left|g\left(x, y_{1}\right)-g\left(x, y_{2}\right)\right| \leq M\left|y_{1}-y_{2}\right| \text { for all }\left(x, y_{1}\right) \text { and }\left(x, y_{2}\right) \text { in } U .
$$

Then there is an open interval I such that $x_{0} \in I$ and such that there is unique differentiable function $y: I \rightarrow \mathbf{R}$ such that $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}(x)=g(x, y(x))$ for all $x \in I$.

Proof

Proof.

For all $\delta>0$, let $I_{\delta}=\left[x_{0}-\delta, x_{0}+\delta\right]$. Since U is open, there are positive numbers a and b such that the rectangle $R=\left[x_{0}-a, x_{0}+a\right] \times\left[y_{0}-b, y_{0}+b\right]$ is contained in U. For each $\delta>0$, let X_{δ} be the subspace of $C\left(I_{\delta}, \mathbf{R}\right)$ of functions f such that $\left|f(x)-y_{0}\right| \leq b$ for all $x \in I_{\delta}$. This just means that the graph of f is in the rectangle $I_{\delta} \times\left[y_{0}-b, y_{0}+b\right] \subset R \subset U$. It is not hard to check that X_{δ} is closed in $C\left(I_{\delta}, \mathbf{R}\right)$. Define $T: X_{\delta} \rightarrow C\left(I_{\delta}, \mathbf{R}\right)$ by

$$
T(f)(x)=y_{0}+\int_{x_{0}}^{x} g(t, f(t)) d t \quad \text { for } x \in I_{\delta}
$$

It will suffice to find a unique f such that $T(f)=f$. Since X_{δ} is a complete metric space, it will suffice to see that there is δ such that $T\left(X_{\delta}\right) \subset X_{\delta}$ and such that $T: X_{\delta} \rightarrow X_{\delta}$ is a contraction.

Proof

Proof Continued.

Since R is compact, there is a K such that $|g(x, y)| \leq K$ for all $(x, y) \in R$. Thus if $f \in X_{\delta}$ and $x \in I_{\delta}$,

$$
\left|T(f)(x)-y_{0}\right|=\left|\int_{x_{0}}^{x} g(t, f(t)) d t\right| \leq \delta K
$$

Hence $T\left(X_{\delta}\right) \subset X_{\delta}$ provided $\delta K \leq b$.

Proof

Proof Continued.

On the other hand, our assumptions on g are such that if $f_{1}, f_{2} \in X_{\delta}$ and $x \in I_{\delta}$, then

$$
\left|g\left(x, f_{1}(x)\right)-g\left(x, f_{2}(x)\right)\right| \leq M\left|f_{1}(x)-f_{2}(x)\right| \leq M\left\|f_{1}-f_{2}\right\|_{\infty}
$$

Therefore

$$
\begin{aligned}
\left|T\left(f_{1}\right)(x)-T\left(f_{2}\right)(x)\right| & =\left|\int_{x_{0}}^{x}\left[g\left(t, f_{1}(t)\right)-g\left(t, f_{2}(t)\right)\right] d t\right| \\
& \leq\left|x-x_{0}\right| M\left|f_{1}(t)-f_{2}(t)\right| \leq \delta M\left\|f_{1}-f_{2}\right\|_{\infty}
\end{aligned}
$$

Therefore $\left\|T\left(f_{1}\right)-T\left(f_{2}\right)\right\|_{\infty} \leq \delta M\left\|f_{1}-f_{2}\right\|_{\infty}$. Thus if we let $\delta=\min \left\{b / K, \frac{1}{2} M\right\}$, then $T\left(X_{\delta}\right) \subset X_{\delta}$ and T is a contraction.

That's Enough for Today

- That is enough for now.

