Math 73/103 Homework week 1

Last Updated: September 16, 2021

Wednesday 09/15/2021

- 1. Let *E* be a subset of a metric space (X, ρ) . We say that *x* is a limit point of *E* if there is a sequence $(x_n) \subset E$ such that $x_n \to x$. Show that *E* is closed if and only if *E* contains all its limit points.
- 2. State and prove a result characterizing open sets in a metric space in terms of sequences (as we did for closed sets in the previous problem). The following terminology might be useful. If U is a subset of a metric space X, then a sequence $(x_n) \subset X$ is eventually in U if there is a N such that $n \geq N$ implies $x_n \in U$.
- 3. Let (X, ρ) be a metric space and fix $E \subset X$. For $x \in X$, we define

$$f(x) = \inf_{y \in E} \rho(x, y).$$

- 1. Show that f is continuous.
- 2. Show that $\{x : f(x) = 0\} = \overline{E}$.
- 4. Show that a metric space is separable if and only if the topology associated with its metric is second-countable.
- 5. A sequence (x_n) in a metric space (X, ρ) is a *bounded sequence* if its corresponding point set is bounded. Show that a convergent sequence in a metric space is bounded and its limit is unique.
- 6. Show that if (x_n) and (y_n) are convergent sequences in a metric space (X, ρ) , then $\rho(x_n, y_n)$ converges.