Math 73/103 Homework week 7

Last Updated: October 31, 2021

Monday 10/25/2021

1. Suppose that $f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$. Show that for all $\epsilon > 0$ there is a $\delta > 0$ such that $\mu(E) < \delta$ implies that

$$\int_E |f| \, d\mu < \epsilon.$$

(Hint: First work the problem assuming that f is bounded. Then let $E_n = \{x : |f(x)| \le n\}$ and $f_n = \chi_{E_n} \cdot f$. Then observe that $\int_X |f - f_n| d\mu \to 0$.)

- 2. Suppose that $\{A_n\}_{n=1}^{\infty}$ are subsets of a set X. Let $B_1 = A_1$ and $B_n = A_n \setminus \bigcup_{k=1}^{n-1} A_k$ for $n \geq 2$. Show that the B_n are pairwise disjoint and that $\bigcup_{k=1}^n A_k = \bigcup_{k=1}^n B_k$ for all n. Observe that if (X, \mathcal{M}) is a measurable space and the A_n are measurable, then so are the B_n .
- 3. Let (X, \mathcal{M}, μ) be a measure space and let $(X, \mathcal{M}_0, \mu_0)$ be its completion.
 - 1. If $f: X \to \mathbb{C}$ is μ_0 -measurable, show that there is a μ -measurable function $g: X \to \mathbb{C}$ such that f = g for μ_0 -almost all x. (Hint: show that it suffices to assume that f is a μ_0 -measurable simple function.)
 - 2. Further observe that there is a μ -null set N such that f(x) = g(x) if $x \notin N$.
 - 3. What does this result say about Lebesgue measurable functions on **R** and Borel functions?

Wednesday 10/27/2021

4. Suppose that Y is a topological space and that \mathcal{M} is a σ -algebra in Y containing all the Borel sets. Suppose that ν is a measure on (Y, \mathcal{M}) such that for all $E \in \mathcal{M}$

$$\mu(E) = \inf\{ \, \mu(V) : V \text{ is open and } E \subset V \, \}.$$
(6)

Suppose also that

$$Y = \bigcup_{n=1}^{\infty} Y_n \quad \text{with } \mu(Y_n) < \infty \text{ for all } n \ge 1.$$
 (*)

In this case we say that μ is a σ -finite outer-regular measure on (Y, \mathcal{M}) .

- 1. Show that Lebesgue measure m on $(\mathbf{R}, \mathcal{L})$ is an example of a σ -finite outer-regular measure.
- 2. If $E \in \mathcal{M}$ and if $\epsilon > 0$, then show that there is an open set V and a closed set F such that $F \subset E \subset V$ with $\mu(V \setminus F) < \epsilon$. (Hint: first assume $\mu(E) < \infty$. Then use (*).)
- 3. Recall that a countable intesection of open sets is called a G_{δ} -set, and that a countable union of closed sets is called a F_{σ} -set. Show that if $E \in \mathcal{M}$, then there is a G_{δ} -set G and a F_{σ} -set A such that $A \subset E \subset G$ and $\mu(G \setminus F) = 0$.
- 4. Use the above to conclude that $(\mathbf{R}, \mathcal{L}, m)$ is the completion of restriction of Lebesgue measure to the Borel subsets of \mathbf{R} .
- 5. We define the symmetric difference of two subsets E and F to be $E\Delta F := E \setminus F \cup F \setminus E$. In this problem, you may use without proof that every open subset of \mathbf{R} is a countable disjoint union of open intervals. Suppose that $E \subset \mathbf{R}$ is a set of finite Lebesgue measure. Let $\epsilon > 0$. Show that there is finite disjoint union F of open intervals such that $m(E\Delta F) < \epsilon$.