Math 73/103 Homework week 8/9

Last Updated: November 12, 2021

1. Suppose that (X, \mathcal{M}, μ) is a measure space and that $f : X \to [0, \infty]$ is measurable. Let ν be the measure on (X, \mathcal{M}) defined by

$$\nu(E) = \int_E f(x) \, d\mu(x) \quad \text{for all } E \in \mathcal{M}.$$

Show that if g is measurable then $g \in \mathcal{L}^1(X, \nu)$ if and only if $fg \in \mathcal{L}^1(X, \mu)$ and that

$$\int_X g(x) \, d\nu(x) = \int_X g(x) f(x) \, d\mu(x).$$

- 2. Suppose that ρ is a premeasure on an algebra \mathcal{A} of sets in X.
 - 1. Show that

$$\rho^*(E) = \inf\{\sum_{k=1}^{\infty} \rho(A_k) : \text{each } A_k \in \mathcal{A} \text{ and } E \subset \bigcup A_k\}$$

is an outer measure on X.

- 2. Show that $\rho^*(A) = \rho(A)$ for all $A \in \mathcal{A}$.
- 3. Show that each $A \in \mathcal{A}$ is ρ^* -measurable.
- 3. Let (X, \mathcal{M}, μ) and (Y, \mathcal{M}, ν) both be counting measure $(\mathbf{N}, \mathcal{P}(\mathbf{N}), \nu)$. Define $f : X \times Y \to \mathbb{R}$ by

$$f(m,n) = \begin{cases} 1 & \text{if } m = n, \\ -1 & \text{if } m = n+1, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$
(8)

Show that f is not integrable and that the two iterated integrals $\int_Y \int_X f \, d\mu \, d\nu$ and $\int_X \int_Y f \, d\nu \, d\mu$ are not equal.

- 4. Let $\mathcal{B}(\mathbf{R})$ be the Borel σ -algebra in \mathbf{R} and $\mathcal{B}(\mathbf{R}^2)$ the Borel σ -algebra in \mathbf{R}^2 . Show that $\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R}) = \mathcal{B}(\mathbf{R}^2)$. (You may use the observation that every open set in \mathbf{R}^2 is a countable union of open rectangles.)
- 5. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite *complete* measure spaces. Let $(X \times Y, \mathcal{L}, \lambda)$ be the completion of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$.
 - (a) Suppose that $E \in \mathcal{M} \otimes \mathcal{N}$ and $\mu \times \nu(E) = 0$. Show that $\mu(E^y) = 0 = \nu(E_x)$ for μ -almost all x and ν -almost all y.

(b) Suppose that f is \mathcal{L} -measurable and that f(x, y) = 0 for λ -almost all (x, y). Show that there is a μ -null set M and a ν -null set M such that for all $x \notin M$ and $y \notin N$, f_x and f^y are integrable and that

$$\int_X f^y \, d\mu = 0 = \int_Y f_x \, d\nu.$$