
Math 105 notes

C. Pomerance

1 The harmonic sum

The harmonic sum is the sum of reciprocals of the positive integers. We know from calculus
that it diverges, this is usually done by the integral test. There’s a more elementary proof that
goes as follows:

∞∑
n=1

1

n
=
∞∑
j=0

2j+1−1∑
n=2j

1

n
>
∞∑
j=0

2j+1−1∑
n=2j

1

2j+1
=
∞∑
j=0

1

2
,

which diverges to infinity. However, the integral test is the better way because it can prove
fairly good upper and lower bounds for the sum of the first N terms of the harmonic series.
We have

1

n
<

∫ n

n−1

dt

t
, n ≥ 2

and
1

n
>

∫ n+1

n

dt

t
, n ≥ 1.

Thus, adding these inequalities for n up to N gets us∫ N+1

1

dt

t
<

N∑
n=1

1

n
≤ 1 +

∫ N

1

dt

t
.

(The second inequality treats the term n = 1 of the sum as just the number 1, and there’s no
estimate here, in fact, if N = 1 the partial sum of the harmonic series is 1.) Evaluating the
integrals gets us

log(N + 1) <
N∑

n=1

1

n
≤ 1 + logN. (1)

Losing a little information here, this result could be written as

N∑
n=1

1

n
= logN +O(1).

This means that there is some positive constant c such that∣∣∣∣∣
N∑

n=1

1

n
− logN

∣∣∣∣∣ ≤ c
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for all positive integers N . The O-notation hides the constant c from view; it takes getting
used to!

This result can also be written as∑
n≤x

1

n
= log x+O(1), x ≥ 1. (2)

Here x is a real variable (we usually use n and N for integer variables). In the inequality under
the summation sign, it is implicitly assumed that n ≥ 1. A more precise way to write it is

bxc∑
n=1

1

n
.

The reason why the estimate holds is that the difference between logbxc and log x is tiny, in
fact it goes to 0 as x→∞. So the additional error made in writing log x instead of logbxc can
be absorbed into the O(1) term in (2).

This is all wonderful, but can we do better? That is, can we be more precise about the
error — what can be said about ∑

n≤N

1

n
− logN?

Let

an =
1

n
−
∫ n+1

n

dt

t
.

Integrating and using properties of log, we get

an =
1

n
− log

(
1 +

1

n

)
,

and expanding via the Taylor series for log(1 + x) which converges for −1 < x ≤ 1, we get

an =
1

n
−
(

1

n
− 1

2n2
+

1

3n3
−+ . . .

)
=

1

2n2
− 1

3n3
+− . . . .

This is an alternating series where the terms decrease in absolute value, so we see that

0 < an <
1

2n2
.

A consequence of this inequality is that the sum

∞∑
n=1

an

converges to a positive constant. Call this constant γ. It is known as Euler’s constant or
sometimes, the Euler–Mascheroni constant. A very recent article about it can be found in the
October 2013 issue of the Bulletin of the American Mathematical Society, written by Jeffrey
Lagarias. To 10 decimal places, γ = 0.5772156649. It is not known if γ is rational or irrational.
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Theorem 1. For x ≥ 1 we have∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
.

Proof. Let N = bxc. We have∑
n≤x

1

n
=
∑
n≤N

1

n
=
∑
n≤N

(
an +

∫ n+1

n

dt

t

)

=
∑
n≤N

an +

∫ N+1

1

dt

t

=
∞∑
n=1

an −
∑

n≥N+1

an + log(N + 1)

= log(N + 1) + γ −
∑

n≥N+1

an.

Let us estimate this remaining sum using the inequality 0 < an < 1
2n2 that we established

above. This gives us

0 <
∑

n≥N+1

an <
∑

n≥N+1

1

2n2
.

This sum can be majorized in two ways, one more formulaic, the other more clever. The
forumlaic way is to use the inequality

1

2n2
<

∫ n

n−1

dt

2t2
,

so that ∑
n≥N+1

1

2n2
<

∫ ∞
N

dt

2t2
=

1

2N
.

The clever way to estimate the sum is to use

1

2n2
<

1

2n(n− 1)
=

1

2

(
1

n− 1
− 1

n

)
and then use a telescoping series to get exactly the same estimate. In any event, this shows
that ∑

n≥N+1

an = O

(
1

N

)
= O

(
1

x

)
.

To complete the proof of the theorem we need to show that

log(N + 1) = log x+O

(
1

x

)
.
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But this is easy, using the inequality log(1 + θ) ≤ θ, which holds for all θ > −1 and is easily
proved using calculus. (We did so in class.) Thus, if θ = (N + 1)/x− 1, we have

0 < log(N + 1)− log x = log

(
N + 1

x

)
= log (1 + θ) ≤ θ <

1

x
.

Above we introduced O-notation, see the book for a fuller description. We also introduced
Euler’s constant, and we set the tone for manipulating sums and approximating with the Taylor
series. These tools will be commonplace in the course.

2 The prime harmonic sum

In 1737, Euler proved that the sum of reciprocals of the primes (called the prime harmonic
sum) diverges. In fact he showed that while the ordinary harmonic sum diverges like log, the
prime harmonic sum diverges like loglog. See the recent article of Paul Pollack for more on what
Euler knew or could have known (“Euler and the partial sums of the prime harmonic series”
at http://www.math.uga.edu/∼pollack/work.html). In particular, the sum of the reciprocals
of the primes diverges.

The book has a proof of the divergence of the prime harmonic series in Chapter 1 that we
covered in class. Here’s another proof, also covered in class. Let P (n) denote the largest prime
factor of n when n ≥ 2, and let P (1) = 1. So, for example, saying that P (n) ≤ 2 is just saying
that n is of the form 2j, and saying that P (n) ≤ 3 means that n = 2j3k for some non-negative
integers j, k. Note that ∑

P (n)≤2

1

n
=
∞∑
j=0

1

2j
= 2.

(The information under the first summation sign here encodes that n is the dummy variable
and that it is running over all positive integers which satisfy the condition.) It’s more exciting
to consider ∑

P (n)≤3

1

n
=

∑
j≥0, k≥0

1

2j3k
.

This double sum over j and k factors (using the fundamental theorem of arithmetic) as∑
j≥0

1

2j

∑
k≥0

1

3k
= 2 · 3

2
= 3.

More generally, we have for any integer N ≥ 2,∑
P (n)≤N

1

n
=
∏
p≤N

∑
j≥0

1

pj
=
∏
p≤N

p

p− 1
. (3)
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Changing the sum into a product was a trick devised by Euler and it depends intimately on
unique factorization into primes.

The sum in (3) on n involves all numbers n ≤ N and also lots of larger ones too, in fact
infinitely many. In any event, we have from (3) that∑

n≤N

1

n
<
∏
p≤N

p

p− 1
.

Using that the sum is greater than logN (see (2)), and taking logs of this last inequality, gets
us to

log logN <
∑
p≤N

log

(
p

p− 1

)
. (4)

Again using the Taylor series, we have

1

p
− log

(
p

p− 1

)
=

1

p
+ log

(
1− 1

p

)
= − 1

2p2
− 1

3p3
− · · · = −Ap,

say. Let α denote the sum

α =
∑
p

Ap =
∑
p

(
1

2p2
+

1

3p3
+ . . .

)
.

(The notation indicates that we have an infinite sum over all primes p.) We note that the sum
is convergent, since

0 < Ap <
1

2

(
1

p2
+

1

p3
+ . . .

)
=

1

2p(p− 1)
. (5)

(Here, we replaced all of the numerical fractions in the terms in Ap with 1
2
, making the sum

larger, and then saw a geometric series which can be summed exactly.) So the series that defines
α converges with comparison to the series∑

p

1

2p(p− 1)
.

We conclude from this that∑
p≤N

1

p
=
∑
p≤N

(
1

p
− log

(
p

p− 1

))
+
∑
p≤N

log

(
p

p− 1

)
=
∑
p

(
1

p
− log

(
p

p− 1

))
−
∑
p>N

(
1

p
− log

(
p

p− 1

))
+
∑
p≤N

log

(
p

p− 1

)
= −α−

∑
p>N

Ap +
∑
p≤N

log

(
p

p− 1

)
.
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Using the inequality (4) for the final sum here, we have then that∑
p≤N

1

p
> log logN − α−

∑
p>N

Ap.

The infinite sum here is, from (5), less than 0, but greater than

−
∑
p>N

1

2p(p− 1)
> − 1

2N
.

Since the sum appears with a negative sign, we can ignore it in the inequality, getting∑
p≤N

1

p
> log logN − α. (6)

So, the big question now is how accurate is this lower bound? Do we have a companion
upper bound?

3 An upper bound for the partial sums of the prime

harmonic series

We begin with the almost trivial estimate

N logN ≥
N∑

n=1

log n ≥
N∑

n=1

∑
p|n

log p.

The inner sum here is over the distinct prime factors of n. The next step is to interchange the
order of summation, which will be a common trick for us. This gets us to

N logN ≥
∑
p≤N

log p
∑
n≤N
p|n

1 =
∑
p≤N

log p ·
⌊
N

p

⌋
>
∑
p≤N

log p

(
N

p
− 1

)
=
∑
p≤N

(
N log p

p
− log p

)
.

(7)

Lemma 1 (Erdős, Chebyshev). For each positive integer N , we have∏
p≤N

p ≤ 4N .

Proof. It’s true for N = 1, 2. If N is the least number for which it fails, then N ≥ 3 and N
is odd (since if N were even it would be composite, and since it is true for the previous odd
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number, the product remains the same as with the previous odd number). Write N = 2k + 1.
We have the binomial coefficient

(
2k+1
k

)
divisible by every prime in [k + 2, 2k + 1], and so

∏
k+2≤p≤2k+1

p ≤
(

2k + 1

k

)
=

1

2

((
2k + 1

k

)
+

(
2k + 1

k + 1

))
,

since the two binomial coefficients here are equal. Their sum is smaller than

2k+1∑
j=0

(
2k + 1

j

)
= (1 + 1)2k+1 = 22k+1.

Using this in the above, we have ∏
k+2≤p≤2k+1

p <
1

2
22k+1 = 22k = 4k.

Since k + 1 < 2k + 1, the lemma is true for k + 1, so we have∏
p≤2k+1

p =
∏

p≤k+1

p
∏

k+2≤p≤2k+1

p < 4k+14k = 42k+1.

Thus, N = 2k + 1 is not a counterexample afterall, so the Lemma always holds.

The logarithm of the inequality in Lemma 1 is∑
p≤N

log p ≤ N log 4.

Using this, moving some terms around in (7), and dividing by N gets us∑
p≤N

log p

p
≤ logN + log 4. (8)

The issue now is how to traverse from this estimate to an upper bound for the partial sum of
the prime harmonic series. For this we introduce the concept of partial summation.

Proposition 1 (Partial summation). Suppose that f(x) is a continuously differentiable real
valued function and an for n = 1, 2, . . . is a sequence of real numbers. Then

∑
n≤N

anf(n) = f(N)
∑
n≤N

an −
∫ N

1

∑
n≤t

anf
′(t) dt.

7



Proof. The contribution of a particular term on the left side is anf(n). We compute what “n”
contributes on the right side. After a little thought we see that this is

f(N)an −
∫ N

n

anf
′(t) dt = f(N)an − (anf(N)− anf(n)) = anf(n).

The contributions are the same, so we have proved the identity.

Partial summation can be used too when we have a prime dummy variable, or more generally
for any subsequence of the natural numbers. For example, if one wants to sum∑

p≤N

apf(p)

and use Proposition 1, we can let an = 0 when n is not prime, so the sum instantly gets
transformed to ∑

n≤N

anf(n),

since all of the new terms are 0. The sums on the right side of the identity are also the same
as if they were restricted to primes, so we have

∑
p≤N

apf(p) = f(N)
∑
p≤N

ap −
∫ N

2

∑
p≤t

apf
′(t) dt.

Note the lower limit of integration is now 2, since we can ignore the n = 1 term, being 0.
We now apply partial summation to the sum in (8):

∑
p≤N

1

p
=
∑
p≤N

log p

p
· 1

log p
=

1

logN

∑
p≤N

log p

p
+

∫ N

2

1

t log2 t

∑
p≤t

log p

p
dt.

Thus, using (8), we have

∑
p≤N

1

p
≤ 1

logN
(logN + log 4) +

∫ N

2

log t+ log 4

t log2 t
dt

= 1 +
log 4

logN
+ log logN − log log 2− log 4

logN
+

log 4

log 2
= log logN + 3− log log 2. (9)

We have thus proved together with (2) that for x ≥ 2,∑
p≤x

1

p
= log log x+O(1).
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I mentioned in class the theorem of Mertens from 1874 that for x ≥ 2,∑
p≤x

1

p
= log log x+ γ − α +O

(
1

log x

)
. (10)

In class we worked out some exercises using partial summation. In particular we used the
logarithm of the inequality in Lemma 1 to show that

π(x) =
∑
p≤x

1 = O

(
x

log x

)
.

We also showed that Mertens’s theorem (10) implies the same thing. Improving the error term
slightly in (10) to o(1/ log x) implies, via partial summation, the prime number theorem, namely

π(x) ∼ x

log x
as x→∞.

Saying that the error in (10) is o(1/ log x) means that∑
p≤x

1
p
− (log log x+ γ − α)

1/ log x
→ 0 as x→∞.

And saying that π(x) ∼ x/ log x as x→∞ means that

π(x)

x/ log x
→ 1 as x→∞.
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