Homework problems, due May 4, 2009

1. Let φ denote Euler's function. Show that for each positive integer m, we have that the set $\{n: m \mid \varphi(n)\}$ has asymptotic density 1 .
2. Let σ denote the sum-of-divisors function, so that $\sigma(n)=\sum_{d \mid n} d$. Do the above problem with σ instead of φ.
3. Let $s(n)=\sigma(n)-n$, the sum-of-proper-divisors function. Show that for each positive integer m, the set $\{n: m \mid n, m \nmid s(n)\}$ has asymptotic density 0 .
4. Let $\lambda(n)$ denote the universal exponent of the group $(\mathbb{Z} / n \mathbb{Z})^{\times}$. That is, $\lambda(n)$ is the least positive integer such that $a^{\lambda(n)} \equiv 1(\bmod n)$ for all integers a coprime to n. (It can also be defined as the order of the largest cyclic subgroup of $(\mathbb{Z} / n \mathbb{Z})^{\times}$.) There is a formula for $\lambda(n)$ that is similar to the one for $\varphi(n)$. In particular, for a prime power p^{a}, we have $\lambda\left(p^{a}\right)=\varphi\left(p^{a}\right)$ unless $p=2, a \geq 3$, in which case, $\lambda\left(2^{a}\right)=2^{a-2}$. And if n has the prime factorization $p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ with distinct primes p_{1}, \ldots, p_{k}, then

$$
\lambda(n)=\operatorname{lcm}\left\{\lambda\left(p_{1}^{a_{1}}\right), \ldots, \lambda\left(p_{k}^{a_{k}}\right)\right\} .
$$

For example, $\lambda(1000)=\operatorname{lcm}\left\{2,5^{2} \cdot 4\right\}=100$, and $\lambda(1001)=\operatorname{lcm}\{6,10,12\}=60$. Show that the set of odd numbers n with

$$
2^{\lambda(n) / 2} \not \equiv 1 \quad(\bmod n)
$$

has asymptotic density 0 . (Hint: If $p \equiv 1(\bmod 8)$, then 2 is a quadratic residue for p.)
5. Let

$$
\begin{aligned}
& A=\left\{n: n \mid 2^{k}-1 \text { for some positive integer } k\right\}, \\
& B=\left\{n: n \mid 2^{k}+1 \text { for some positive integer } k\right\}
\end{aligned}
$$

Show that A has asymptotic density $1 / 2$ and B has asymptotic density 0. (Hint: If $p \equiv 7$ $(\bmod 8)$, then 2 is a quadratic residue for p.)

