Homework problems, due May 4, 2009

- 1. Let φ denote Euler's function. Show that for each positive integer *m*, we have that the set $\{n : m \mid \varphi(n)\}$ has asymptotic density 1.
- 2. Let σ denote the sum-of-divisors function, so that $\sigma(n) = \sum_{d|n} d$. Do the above problem with σ instead of φ .
- 3. Let $s(n) = \sigma(n) n$, the sum-of-proper-divisors function. Show that for each positive integer m, the set $\{n : m \mid n, m \nmid s(n)\}$ has asymptotic density 0.
- 4. Let $\lambda(n)$ denote the universal exponent of the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$. That is, $\lambda(n)$ is the least positive integer such that $a^{\lambda(n)} \equiv 1 \pmod{n}$ for all integers *a* coprime to *n*. (It can also be defined as the order of the largest cyclic subgroup of $(\mathbb{Z}/n\mathbb{Z})^{\times}$.) There is a formula for $\lambda(n)$ that is similar to the one for $\varphi(n)$. In particular, for a prime power p^a , we have $\lambda(p^a) = \varphi(p^a)$ unless $p = 2, a \geq 3$, in which case, $\lambda(2^a) = 2^{a-2}$. And if *n* has the prime factorization $p_1^{a_1} \dots p_k^{a_k}$ with distinct primes p_1, \dots, p_k , then

$$\lambda(n) = \operatorname{lcm}\{\lambda(p_1^{a_1}), \dots, \lambda(p_k^{a_k})\}.$$

For example, $\lambda(1000) = \text{lcm}\{2, 5^2 \cdot 4\} = 100$, and $\lambda(1001) = \text{lcm}\{6, 10, 12\} = 60$. Show that the set of odd numbers n with

$$2^{\lambda(n)/2} \not\equiv 1 \pmod{n}$$

has asymptotic density 0. (Hint: If $p \equiv 1 \pmod{8}$, then 2 is a quadratic residue for p.)

5. Let

 $A = \{n : n \mid 2^k - 1 \text{ for some positive integer } k\},\$ $B = \{n : n \mid 2^k + 1 \text{ for some positive integer } k\}.$

Show that A has asymptotic density 1/2 and B has asymptotic density 0. (Hint: If $p \equiv 7 \pmod{8}$, then 2 is a quadratic residue for p.)