Supplementary homework problems, due May 11, 2009

1. Disprove: If $f(x)$ is a non-constant, monic irreducible polynomial in $\mathbb{Z}[x]$, then $f(n)$ is prime for infinitely many integers n.
2. Formulate a conjecture about which non-constant polynomials in $\mathbb{Z}[x]$ are prime for infinitely many integer arguments.
3. We say a positive integer s is squarefull (or powerful) if $p^{2} \mid s$ for each prime $p \mid s$. The sequence of squarefull integers is $1,4,8,9, \ldots$ Every power is squarefull, but not converselty; for example, 72 is squarefull.
(a) Show that every squarefull number has a (not necessarily unique) representation as a square times a cube. Use this to show that the sum of the reciprocals of the squarefull numbers is finite.
(b) For a natural number n, let $s(n)$ denote the largest squarefull divisor of n. Show that for each squarefull number s, the set $\{n: s(n)=s\}$ has a positive asymptotic density D_{s}. (For example, $D_{1}=6 / \pi^{2}$, see problem 2a in the text.)
(c) Show that $\sum_{s \text { squarefull }} D_{s}=1$.
(d) Use this to do problem 3a in the text.
