Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Lecture 11: Smoothing using Orthogonal Functions

Let $X_1, X_2, ..., X_n$ be IID observations from a distribution on [0,1] with density f. If we assume that $f \in L^2$, we can write

$$f(x) = \sum_{j=0}^{\infty} \beta_j \phi_j(x)$$

where $\{\phi_j\}$ is an orthonormal basis of $L^2[0,1]$.

▶ If we know f(x), the coefficient β_j is given by

$$\beta_j = \int_{[0,1]} f(x)\phi_j(x)dx.$$

- The above formula looks similar to the Kernel density estimation. But the basis function $\phi_j(x)$ does not necessarily have measure 1 in contrast to the Kernel.
- Without knowing f(x), how can we calculate the coefficient β_j ? We need to estimate it using the data.

▶ The estimate $\hat{\beta}_j$ of β_j is given by

$$\hat{\beta}_j = \frac{1}{n} \sum_{i}^{n} \phi_j(x_i)$$

Theorem. The mean and variance of $\hat{\beta}_j$ are

$$E[\hat{\beta}_j] = \beta_j, \quad Var(\hat{\beta}_j) = \frac{\sigma_j^2}{n}$$

where $\sigma_j^2 = Var(\phi_j(X_i)) = \int (\phi_j(x) - \beta_j)^2 f(x) dx$. **Proof.**

$$E[\hat{\beta}_j] = \frac{1}{n} \sum_{i=1}^n E[\phi_j(X_i)] = E[\phi_j(X_1)] = \int \phi_j(x) f(x) dx = \beta_j.$$

▶ The estimate $\hat{\beta}_j$ of β_j is given by

$$\hat{\beta}_j = \frac{1}{n} \sum_{i}^{n} \phi_j(x_i)$$

Theorem. The mean and variance of $\hat{\beta}_i$ are

$$E[\hat{\beta}_j] = \beta_j, \quad Var(\hat{\beta}_j) = \frac{\sigma_j^2}{n}$$

where $\sigma_j^2 = Var(\phi_j(X_i)) = \int (\phi_j(x) - \beta_j)^2 f(x) dx$. **Proof.**

$$E[\hat{\beta}_j] = \frac{1}{n} \sum_{i=1}^n E[\phi_j(X_i)] = E[\phi_j(X_1)] = \int \phi_j(x) f(x) dx = \beta_j.$$

Exercise. Prove the variance.

For a given f(x), we know that

$$\sum_{j}^{J} \beta_{j} \phi_{j}(x) \tag{1}$$

is more accurate if $J \in \mathbb{N}$ increases.

- ▶ This is not true anymore with the estimates $\{\hat{\beta}_j\}$. Think about the regression. A higher order polynomial regression function is not always better than a lower order polynomial regression function (bias and variance tradeoff).
- ▶ J is called the **smoothing parameter**. It is typically chosen between 1 and \sqrt{n} where n is the sample size. J is chosen so that it minimizes the **risk** (or **mean integrated squared error**).

Let $\hat{f}(x)$ is an estimate of f(x) given by

$$\hat{f}(x) = \sum_{j}^{J} \hat{\beta}_{j} \phi_{j}(x).$$

Remember that the risk of \hat{f} using a smoothing parameter J is the expected value of the L^2 error, that is

$$R(J) = E\left[\int (\hat{f}(x) - f(x))^2 dx\right] = \sum_{j=1}^{J} \frac{\sigma_j^2}{n} + \sum_{j=J+1}^{\infty} \beta_j^2.$$

Theorem. An estimate of the risk R(J) is

$$\hat{R}(J) = \sum_{j=1}^{J} \frac{\hat{\sigma}_j^2}{n} + \sum_{j=J+1}^{\infty} \left(\hat{\beta}_j^2 - \frac{\hat{\sigma}_j^2}{n} \right)_+$$

where $a_+ = \max\{a, 0\}$ and

$$\hat{a}_j^2 = \frac{1}{n-1} \sum_{i}^{n} \left(\phi_j(X_i) - \hat{\beta}_j \right)^2.$$

▶ Using the J^* that minimizes $\hat{R}(J)$, the estimate of the density $\hat{f}(x)$ is given by

$$\hat{f}(x) = \sum_{j}^{J^*} \hat{\beta}_j \phi_j(x)$$

Note that $\hat{f}(x)$ can be negative!! If so, take $\hat{f}^* = \max(\hat{f}, 0)$ and normalize it.

11.2 Regression

For a data set $\{X_i, Y_i\}$,

▶ Remember that the regression function r(x) is defined as the expected value of Y given x

$$r(x) = E[Y|X = x].$$

- We studied parametric and nonparametric regressions. In particular, for nonparametric regression, we know a kernel density estimation based regression method.
- ▶ It is also possible to calculate a regression function using density estimation with orthogonal functions.
- Assume that r(x) is in $L^2(0,1)$ and x_i is uniformly distributed.
- ► $r(x) = \sum_{j=1}^{\infty} \beta_j \phi_j(x)$ where $\beta_j = \int_0^1 r(x) \phi_j(x) dx$ for an orthonormal basis $\{\phi_i\}$ of $L^2(0,1)$.

11.2 Regression

▶ The estimate of β_j , $\hat{\beta}_j$ is given by

$$\hat{\beta}_j = \frac{1}{n} \sum_{i=1}^n Y_i \phi_j(x_i), \quad j = 1, 2, ...$$

Theorem.

$$\hat{\beta}_j \sim N(\beta_j, \frac{\sigma^2}{n})$$

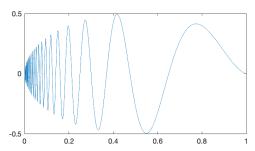
where σ^2 is the variance of the measurement error e_i

$$Y_i = r(x_i) + e_i$$

Idea of Proof. For the mean,

$$E[\hat{\beta}_j] = \frac{1}{n} \sum_{i=1}^n E[Y_i] \phi_j(x_i) = \frac{1}{n} \sum_{i=1}^n r(x_i) \phi_j(x_i)$$
$$\sim \int r(x) \phi_j(x) dx = \beta_j.$$

- Suppose that a regression function r(x) has a sharp jump but that r(x) is otherwise very smooth. That is, r(x) is spatially inhomogeneous.
- ▶ Doppler function $\sqrt{x(1-x)} \sin\left(\frac{2.1\pi}{x+.05}\right)$



Wavelets are local orthogonal functions.

Harr wavelet.

Harr father wavelet (or Harr scaling function)

$$\phi(x) = \begin{cases} 1 & \text{if } 0 \le x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

► Haar mother wavelet

$$\psi(x) = \begin{cases} -1 & \text{if } 0 \le x \le 1/2\\ 1 & \text{if } 1/2 < x \le 1 \end{cases}$$

For any integers *j* and *k* define

$$\psi_{j,k}(x) = 2^{j/2}\psi(2^{j}x - k).$$

▶ Let $W_j = \{\psi_{jk}, k = 1, 2, ..., 2^j - 1\}$ be the set of rescaled and shifted mother wavelets at resolution j.

Theorem. The set of functions

$$\{\phi, W_0, W_1, ...\}$$

is an orthonormal basis for $L^2(0,1)$.

Corollary. For any $f \in L^2(0,1)$,

$$f(x) = \alpha \phi(x) + \sum_{j=1}^{\infty} \sum_{k=0}^{2^{j}-1} \beta_{j,k} \psi_{j,k}(x)$$

where $\alpha = \int_0^1 f(x)\phi(x)dx$, $\beta_{j,k} = \int_0^1 f(x)\psi_{j,k}(x)dx$.

- $ightharpoonup \alpha$ is called scaling coefficient.
- \triangleright $\beta_{i,k}$ are called **detail coefficients**.
- ▶ In a finite sum approximation of f using J different scales

$$f(x) = \alpha \phi(x) + \sum_{j=1}^{J} \sum_{k=0}^{2^{J}-1} \beta_{j,k} \psi_{j,k}(x)$$

J represents the resolution of the approximation.

Regression.

- Consider the regression model $Y_i = r(x_i) + \sigma e_i$ where $e \sim N(0,1)$ and $x_i = i/n$.
- ▶ For simplicity, assume that $n = 2^J$ for some J.
- Smoothing with wavelets requires thresholding instead of truncation. That is, instead of choosing a smoothing parameter that determines the number of terms to keep, thresholding keeps coefficients that are sufficiently large.
- ▶ One example of thresholding is hard, universal thresholding.

Hard, universal thresholding.

1. Calculate

$$\hat{\alpha} = \frac{1}{n} \sum_{i} \phi_k(x_i) Y_i$$
, and $D_{j,k} = \frac{1}{n} \sum_{k} \psi_{j,k}(x_i) Y_i$

for $0 \le j \le J - 1$ where $J = \log_2(n)$.

2. Apply universal thresholding

$$\hat{\beta}_{j,k} = \left\{ egin{array}{ll} D_{j,k} & \mbox{if } |D_{j,k}| > \mbox{threshold value} \\ 0 & \mbox{otherwise} \end{array}
ight.$$

3. Set
$$\hat{r}(x) = \hat{\alpha}\phi(x) + \sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} \hat{b}_{j,k}\psi_{j,k}(x)$$
.

Homework

For n = 10,000, set $x_i = i/n$ and $y_i = \text{doppler}(x_i) + e_i$ where $e_i \sim N(0,0.05^2)$.

- 1. Use the trigonometric functions to estimate the regression function.
- Use the Legendre polynomials to estimate the regression function.
- 3. Use the Harr wavelets to estimate the regression function.

For 1-3, try to use a small number of terms. You are okay to use any programming libraries (that is, you do not need to make your own code; just use standard libraries) but specify all parameters to get your estimates.