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Review of Lecture 1

I Course Webpage: http://math.dartmouth.edu/∼m106w19

I Office Hours: WF 2-3 pm

I Bayes’ theorem
p(u|v) ≈ p(u)p(v |u)

I (Average) entropy

H({p}) = −
M∑
m

pm ln pm

The maximum entropy distribution (or equilibrium
distribution) of fixed mean and variance is given by the
Gaussian distribution.



Probability

Probability plays an important role in UQ. We will review some
basic facts of probability in this lecture.



2.1 Probability space (Ω,B, µ)

The triple (Ω,B, µ) is called a probability space
where
Def. A sample space Ω is the space of all possible outcomes.
Def. B is a σ-algebra if it satisfies the following properties

1. ∅ ∈ B and Ω ∈ B
2. If B ∈ B, then its complement Bc = Ω\B ∈ B.

3. For {Ai , i ∈ N}, then
⋃
i

Ai ∈ B

Def. A probability measure µ(A) for A ∈ B is a function
µ : B → R such that

1. µ(Ω) = 1

2. 0 ≤ µ ≤ 1.

3. If {A1,A2, ...,An, ...} is a finite or countable collection of
events such that Ai ∈ B and Ai ∩ Aj = ∅ for i 6= j ,
µ(
⋃∞

i Ai ) =
∑∞

i µ(Ai )



2.1 Probability space (Ω,B, µ)

Def. An element ω of Ω is an outcome.
Def. An element element of B is called an event.
Def. A random variable X : Ω→ R is a B-measurable function
defined on Ω, where B-measurable means that the subset of
elements ω ∈ Ω for which X (ω) ≤ x is an element of B for every
x ∈ R.
Def. Given a probability measure µ(A), the probability distribution
function of a random variable X , PXA, is defined by

PX (x) = µ(X ≤ x)

Def. If PX is differentiable, its derivative, p(x) = P ′X (x) is called
the probability density of X .



2.1.1 Examples of probability densities

I Bernoulli density. Let X represent a binary coin flip with
µ(X = 1) = p and µ(X = 0) = 1− p for some p ∈ [0, 1]. The
probability density is

p(x) = px(1− p)1−x for x ∈ {0, 1}.

I Binomial density. Flip the above coin n times and let X be
the number of heads. Assume that the tosses are
independent. For x = 1, 2, ..., n,

p(x) =

(
n

x

)
px(1− p)n−x



2.1.1 Examples of probability densities

I Bernoulli density. Let X represent a binary coin flip with
µ(X = 1) = p and µ(X = 0) = 1− p for some p ∈ [0, 1]. The
probability density is

p(x) = px(1− p)1−x for x ∈ {0, 1}.

I Binomial density. Flip the above coin n times and let X be
the number of heads. Assume that the tosses are
independent. For x = 1, 2, ..., n,

p(x) =

(
n

x

)
px(1− p)n−x

Exercise What is the sample space of the Bernoulli distribution?
What is is corresponding probability measure?



2.1.1 Examples of probability densities

I Gaussian (or normal) density with mean m and variance σ2,
N(m, σ2)

p(x) =
1√

2πσ2
e−

(x−m)2

2σ2

’

I Uniform density on the interval (a, b)

p(x) =

{
1

b−a , x ∈ (a, b),

0, x 6∈ (a, b)

I Cauchy density

p(x) =
1

π(1 + x2)



2.1.2 Transformations of random variables

Let X and Y be two random variables and r is a relation between
them, that is, Y = r(X ). If p(x) is the density of X , what is the
density of Y , say f (y) in terms of p and y?



2.1.2 Transformations of random variables

Let X and Y be two random variables and r is a relation between
them, that is, Y = r(X ). If p(x) is the density of X , what is the
density of Y , say f (y) in terms of p and y?
Answer
When r is monotone and differentiable,

p(x)dx = p(r−1(y))|dr
−1

dy
|dy

Thus, f (y) = p(r−1(y)|dr
−1

dy
|



2.1.2 Transformations of random variables

Let X and Y be two random variables and r is a relation between
them, that is, Y = r(X ). If p(x) is the density of X , what is the
density of Y , say f (y) in terms of p and y?
Example
Let p(x) = e−x for x > 0 and Y = r(x) = logX . From the change
of variables,

f (y) = p(ey )
dey

dy
= e−e

y
ey



2.1.2 Transformations of random variables

Let X and Y be two random variables and r is a relation between
them, that is, Y = r(X ). If p(x) is the density of X , what is the
density of Y , say f (y) in terms of p and y?
Answer
In general case, follow the following steps

1. For each y , find the set Ay = {x |r(x) ≤ y}.
2. PY (y) = µ(Y ≤ y) = µ(r(X ) ≤ y) = µ({x |r(x) ≤ y}) =∫

Ay
p(x)dx

3. f (y) = P ′y (y).



2.1.2 Transformations of random variables

Let X and Y be two random variables and r is a relation between
them, that is, Y = r(X ). If p(x) is the density of X , what is the
density of Y , say f (y) in terms of p and y?
Example
Let p(x) = e−x for x > 0 and Y = r(x) = logX . Then,
PX (x) =

∫ x
0 p(t)dt = 1− e−x and Ay = {x |x ≤ ey}.

PY (y) = µ(Y ≤ y) = µ(logX ≤ y) = µ(X ≤ ey ) = PX (ey ) = 1−e−ey .

Therefore, f (y) = eye−e
y
.



2.1.2 Transformations of random variables

Exercise X is uniform on [0, 2π]. Find the density of Y = sinX .
Exercise Let X1 and X2 are two independent uniform distributions
on (0, 1).

1. Find the density of Y1 = X1 + X2.

2. Find the density of Y2 = X1 − X2.

3. Find the density of Y3 = X1/X2.

4. Find the density of Y4 = max(X1,X2).



2.2 Expected Values and Moments

Def. Let (Ω,B, µ) be a probability space and X a random variable.
Then the expected value (or mean) of the random variable X is
defined as the integral of X over Ω with respect to the measure µ

E [X ] =

∫
Ω
X (ω)dµ =

∫
xp(x)dx .

Def. The variance Var(X ) of the random variable X is

Var(X ) = E [(X − E [X ])2] =

∫
(x − E [X ])2p(x)dx

and the standard deviation of X is

σ(X ) =
√

Var(X ).



2.2 Expected Values and Moments

Def. The m-th moment of a random variable X is defined by

E [Xm] =

∫ ∞
−∞

xmp(x)dx



2.2 Expected Values and Moments

Def. The m-th moment of a random variable X is defined by

E [Xm] =

∫ ∞
−∞

xmp(x)dx

Thm. If the m-th moment exists and j < m then the j-th moment
exists.



2.2 Expected Values and Moments

Def. The m-th moment of a random variable X is defined by

E [Xm] =

∫ ∞
−∞

xmp(x)dx

Proof.

E [Xm] =
∫∞
−∞ xmp(x)dx =

∫
|x |≤1 x

mp(x)dx +
∫
|x |≥1 x

mp(x)dx

≤
∫
|x |≤1 +

∫
|x |≥1 x

mp(x)dx

≤ 1 + E [X k ] ≤ ∞.



2.2 Expected Values and Moments

Exercise

I Find the mean and variance of a Gaussian random variable X
with a density p(x) = 1√

2πσ2
exp(−(x −m)2/2σ2).

I Find the mean of the Cauchy distribution p(x) = 1
π(1+x2)

.

I Find the mean and variance of the Binomial distribution
b(x ; n, p) =

(n
x

)
px(1− p)n−x .



2.2 Expected Values and Moments

Exercise Let X be a random variable such that E [|X |m] ≤ ACm

for some positive constancts A and C , and all intergers m ≥ 0.
Show that µ(|X | > C ) = 0.



2.3 Joint Probability and Independence

Def. Two events A and B, A,B ∈ B, are independent if
µ(A ∩ B) = µ(A)µ(B).
Def. Two random variables X and Y are independent if the
events {X ≤ x} and {Y ≤ y} are independent for all x and y .
Def. The joint distribution of two random variables X and Y is
defined by

PXY (x , y) = µ(X ≤ x ,Y ≤ y)

Def. If the second mixed derivative ∂2PXY (x , y)/∂x∂y exists, it is
called the joint probability density

PXY (x , y) =

∫ x

−∞

∫ y

−∞
p(s, t)dtds



2.3 Joint Probability and Independence

Def. The covariance of two random variables X and Y is

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])].

Def. Correlation between X and Y is defined as

Cor(X ,Y ) =
Cov(X ,Y )

σ(X )σ(Y )

Def. Two random variables X and Y are uncorrelated if
Cor(X ,Y ) = 0.
Note. X and Y are independent ⇒ X and Y are uncorrelated.
The opposite direction does not hold.
Def. The marginal densities of X and Y are

p(x) =

∫
p(x , y)dy , p(y) =

∫
p(x , y)dx



2.3 Joint Probability and Independence

Exercise (programming) Generate a sample of two random
variables X and Y where X and Y are normal with a correlation ρ.



2.4 Conditional Probability and Conditional Expectation

Def. The probability of an event B given an event A is defined by

µ(B|A) =
µ(A ∩ B)

µ(B)
.

Def. If two random variables X and Y have densities pX and pY
respectively, the conditional probability density of X given Y is
defined by

pX |Y (x |y) =
pX ,Y (x , y)

pY (y)

Def. The conditional expectation of X given Y is defined by

E [X |Y ] =

∫
xpX |Y (x |y)dx



2.4 Conditional Probability and Conditional Expectation

Exercise Let X and Y be two random variables with E [Y ] = m
and E [Y 2] <∞.

1. Show that the constant c that minimizes E [(Y − c)2] is
c = m.

2. Show that the random variable f (X ) that minimizes
E [(Y − f (X ))2|X ] is

f (X ) = E [Y |X ].

3. Show that the random variable f (X ) that minimizes
E [(Y − f (X ))2] is also

f (X ) = E [Y |X ].



2.4 Conditional Probability and Conditional Expectation

Bayes’ theorem

µ(B|A) =
µ(B)µ(A|B)

µ(A)

Proof
µ(B|A)µ(A) = µ(B)µ(A|B) = µ(A ∩ B)



2.4 Conditional Probability and Conditional Expectation

Review of the facebook interview question from Lecture 1
You’re about to get on a plane to Seattle. You want to know if you
should bring an umbrella. You call 3 random friends of yours who
live there and ask each independently if it’s raining. Each of your
friends has a 2/3 chance of telling you the truth and a 1/3 chance
of messing with you by lying. All 3 friends tell you that ”Yes” it is
raining. What is the probability that it’s actually raining in Seattle?

P(rain|y , y , y) =
P(y , y , y |rain)P(rain)

P(y , y , y)

=
(2/3)3P(rain)

P(y , y , y)

Can you calculate the denominator? Can you represent it in terms
of P(rain)?



2.4 Conditional Probability and Conditional Expectation

Exercise Is the conditional probability larger than the prior
probability? That is, can you show that

µ(B|A) ≥ µ(B)?

This statement implies that collecting data, A, increases the
probability of B.

Answer: It is not always true. As a counterexample, consider the
case µ(A) = µ(B) = 1/2 and µ(A ∩ B) = 1/8. Then
µ(B|A) = 1/4 < 1/2 = µ(B).
This example shows that collecting data does not alway improve
your probability.
But wait until the next lecture. There is more to discuss before
giving up collecting data.
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2.4 Conditional Probability and Conditional Expectation

Exercise Is the conditional probability larger than the prior
probability? That is, can you show that

µ(B|A) ≥ µ(B)?

This statement implies that collecting data, A, increases the
probability of B.
Answer: It is not always true. As a counterexample, consider the
case µ(A) = µ(B) = 1/2 and µ(A ∩ B) = 1/8. Then
µ(B|A) = 1/4 < 1/2 = µ(B).
This example shows that collecting data does not alway improve
your probability.
But wait until the next lecture. There is more to discuss before
giving up collecting data.



2.5 Inequalities

Markov’s inequality Let X be a non-negative random variable
and suppose E [X ] exists. For any t > 0,

µ(X > t) ≤ E [X ]

t
.



2.5 Inequalities

Markov’s inequality Let X be a non-negative random variable
and suppose E [X ] exists. For any t > 0,

µ(X > t) ≤ E [X ]

t
.

Proof.

E [X ] =

∫ ∞
0

xp(x)dx =

∫ t

0
xp(x)dx +

∫ ∞
t

xp(x)dx

≥
∫ ∞
t

xp(x)dx ≥ t

∫ ∞
t

p(x)dx = tµ(X > t).



2.5 Inequalities

Chebyshev’s inequality Let m = E [X ] and σ2 = Var(X ). Then,

µ(|X −m| ≥ t) ≤ σ2

t2
and µ(|Z | ≥ k) ≤ 1

k2

where Z = (X −m)/σ.



2.5 Inequalities

Chebyshev’s inequality Let m = E [X ] and σ2 = Var(X ). Then,

µ(|X −m| ≥ t) ≤ σ2

t2
and µ(|Z | ≥ k) ≤ 1

k2

where Z = (X −m)/σ.
Proof. Use the Markov’s inequality for Y = |X −m|2.



2.5 Inequalities

Exercise Will you consider a coin asymmetric if after 1000 coin
tosses the number of heads is equal to 600?



2.6 Types of convergence

Let we have a sequence of random variables,X1,X2, ...,Xn and let
X is another random variable. Then

I Xn converges to Xn in quadratic mean (or in L2) if

E [(Xn − X )2]→ 0.

I Xn converges to X in probability if for every ε > 0

P(|Xn − X | > ε)→ 0

I Xn converges to X in distribution if for all t

lim
n→∞

Fn(t) = F (t)

where Fn(t) and F (t) are the distribution functions of Xn and
X respectively.



2.6 Types of convergence

Convergence in quadratic mean ⇒ Convergence in probability ⇒
Convergence in distribution



2.7 Limit Theorems

Let X1,X2, ...,Xn are independent, identically distributed random
variables with variance σ2 and mean m.

Q1 What is the mean of X1 + X2 + · · ·+ Xn?

Q2 What is the variance of X1 + X2 + · · ·+ Xn?

The Law of Large Numbers For

X n =
1

n

n∑
i

Xi ,

converges in probability to the expectation E [Xi ] = m.
The Central Limit Theorem
Define

Sn =
1√
n

n∑
i

Xi .

Then Sn converges in distribution to a Gaussian variable with mean
m and variance σ2.



2.7 Limit Theorems

Let X1,X2, ...,Xn are independent, identically distributed random
variables with variance σ2 and mean m.
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The Central Limit Theorem
Define

Sn =
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n
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i
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Then Sn converges in distribution to a Gaussian variable with mean
m and variance σ2.



2.7 Limit Theorems

Monte Carlo Integration∫
[0,1]d

f (x)dx ≈ 1

n

n∑
i

f (xi )

where {xi} is a sample of [0, 1]d .
The Central Limit Theorem implies that the Monte Carlo
approximation error is of order 1√

n
.



Homework

I Write a code that generates a sample of n values from the
standard normal distribution N(0, 1). n is an input parameter
of the code.

I Draw a histogram of the sample.

I Draw the Gaussian fit to the sample statistics. That is, draw
the Gaussian density with the same mean and variance of the
sample.

I Draw a histogram of yi = exi where xi is a sample from the
standard normal distribution.

I Write a code that draws a sample of n values of the uniform
distribution on [0, 1]. n is an input parameter of the code.

I Use a transformation of random variables to generate samples
from the Cauchy density p(x) = 1

π(1+x2)
.

I Draw a histogram of the sample.

I Calculate the mean. Plot the mean as a function of n.



Preview of Lecture 3: Information Theory

I Entropy, H(p)

I Relative Entropy, D(p, q)

I Mutual Information, I (p, q)


