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3.1 Entropy

Def. The entropy H(X ) of a random variable X with density p(x)
is defined as

H(X ) = −
∫
S
p(x) ln p(x)dx ,

where S is the support of p(x) (that is, the set where p(x) is not
zero).
Entropy depends only on the density p(x) and thus entropy is
sometime written as H(p) rather than H(X ).



3.1 Entropy

Example. Let X is a Gaussian with density p(x) = 1√
2πσ2

e−
x2

2σ2 .

H(p) = −
∫
p ln pdx

= −
∫
p
[
− x2

2σ2 − ln
√

2πσ2
]
dx

= E [X 2]
2σ2 + 1

2 ln 2πσ2

= 1
2 + 1

2 ln 2πσ2

= 1
2 ln 2πeσ2

(1)

Note. For a n-dimensional Gaussian X with mean zero and
covariance K , H(p) = 1

2 ln(2πe)m|K | where |K | is the determinant
of K .



3.2 Joint and Conditional Entropy

Def. The entropy of a set X1,X2, ...,Xn of random variables with
density p(x1, x2, ..., xn) is defined as

H(p(x1, x2, ..., xn)) = −
∫

p(x1, x2, ..., xn) ln p(x1, x2, ..., xn)dx1 · · · dxn.

Def. If X and Y have a joint density p(x , y), the conditional
entropy H(X |Y ) is defined as

H(X |Y ) = −
∫

p(x , y) ln p(x |y)dxdy .

Q. Why not −
∫
p(x |y) ln p(x |y)dxdy?

Fact. H(X |Y ) = H(X ,Y )− H(Y )
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3.3 Relative Entropy and Mutual Information

Def. The relative entropy (or Kullback-Leibler distance) D(p, g)
between two densities p and q is defined by

D(p, q) =

∫
p ln

p

q
dx

D is a measure of the inefficiency of assuming that the distribution
is q when the true distribution is p.
Def. The mutual information I (X ,Y ) between two random
variables with joint density p(x , y) is defined as

I (X ,Y ) =

∫
p(x , y) ln

p(x , y)

p(x)p(y)
dxdy .

Note.
I (X ,Y ) = D(p(x , y), p(x)p(y)) = H(X ) + H(Y )− H(X ,Y ).



3.3 Relative Entropy and Mutual Information

Example. Let (X ,Y ) is a Gaussian with mean (0, 0) and a

covariance K =

(
1 ρ
ρ 1

)
.

H(X ) = H(Y ) = 1
2 ln(2πe) and H(X ,Y ) = 1

2 ln(2πe)2(1− ρ2).
Therefore I (X ,Y ) = H(X ) + H(Y )− H(X ,Y ) = −1

2 ln(1− ρ2). If
ρ = 0, X and Y are independent and the mutual information is 0.
If ρ = ±1, X and Y are perfectly correlated and the mutual
information is infinite.
Note. X and Y are Gaussian and thus zero correlation implies
independence.
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3.4 Properties of entropy, relative entropy, and mutual
information

Theorem.
D(p, q) ≥ 0

with equality iff p = q almost everywhere.
Proof.

−D(p, q) =
∫
p ln q

pdx

≤ ln
∫
p q
pdx from Jensen’s inequality

= ln
∫
g

≤ ln 1 = 0.

(2)

Corollary. I (X ,Y ) ≥ 0 with equality iff X and Y are independent.



3.4 Properties of entropy, relative entropy, and mutual
information

Corollary. H(X |Y ) ≤ H(X ) with equality iff X and Y are
independent.

That is, collecting data decreases uncertainty
(yay!).
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3.4 Properties of entropy, relative entropy, and mutual
information

Theorem. (Chain rule for entropy)

H(X1,X2, ...,Xn) =
∑

H(Xi |X1,X2, ...,Xi−1).

Proof. Homework.
Corollary.

H(X1,X2, ...,Xn) ≤
∑

H(Xi )

Hadamard’s inequality. If X is a Gaussian distribution with mean
0 and a covariance K , we have

|K | ≤ Πn
i=1Kii

where |K | is the determinant of K .



3.4 Properties of entropy, relative entropy, and mutual
information

In Lecture 1, we have seen that the probability density maximizing
entropy with a given mean and a variance is Gaussian. Now we
show the following general result.
Theorem. Let the random vector X ∈ Rn have zero mean and
covariance K . Then

H(X ) ≤ 1

2
ln(2πe)n|K |,

with equality iff X is Gaussian is the covariance K and mean zero.
|K | is the determinant of K .
Proof. Let g(x) be any density satisfying

∫
g(x)xixjdxidxj = Kij

for all i , j . Let φK be the density of the Gaussian N(0,K ). Then

0 ≤ D(g , φK )
=
∫
g ln(g/φK )

= −h(g)−
∫
g lnφK

= −h(g)−
∫
φK lnφK

= −h(g) + h(φK ).

(3)



3.4 Properties of entropy, relative entropy, and mutual
information

Theorem. (Estimation error) For any one-dimensional random
variable X and estimator X̂ ,

E [(X − X̂ )2] ≥ 1

2πe
e2H(X ),

with equality iff X is Gaussian and X̂ is the mean of X .
Proof. Let X̂ be any estimator of X . Then

E [(X − X̂ )2] ≥ minX̂ E [(X − X̂ )2]
= E [(X − E [X ])2]
= Var(X )

≥ 1
2πe e

2H(X ).

(4)



Homework

I Draw n values of the standard normal random variable, X .

I When Y = X 2, calculate D(X ,Y ) using the sample. If you
use a histogram in a sense, change the number of bins and
check the change of the relative entropy.

I Compare the relative entropy with an analytic solution.


