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3.1 Entropy

Def. The entropy H(X) of a random variable X with density p(x)
is defined as

H(X) = — /5 p(x) In p(x)dx,

where S is the support of p(x) (that is, the set where p(x) is not
zero).

Entropy depends only on the density p(x) and thus entropy is
sometime written as H(p) rather than H(X).



3.1 Entropy

2
. . . . o 1 X
Example. Let X is a Gaussian with density p(x) = =€
H(p) = —fplnpdx
——fp[ ——Inv27702 dx
= E[X ] +5 L1n 2702 1)
= 2 + 1in 271'0
= 1 In 27Te(72

Note. For a n—dimensional Gaussian X with mean zero and

covariance K, H(p) =

of K.

1In(2me)™|K| where |K]| is the determinant



3.2 Joint and Conditional Entropy

Def. The entropy of a set Xi, Xp, ..., X, of random variables with
density p(x1, x2, ..., X,) is defined as

H(p(x1, %2, ...y Xn)) = —/p(xl,xz, oy Xn) In p(x1, X2, ooy Xn ) dXy - - - Xy

Def. If X and Y have a joint density p(x,y), the conditional
entropy H(X|Y) is defined as

HOXIY) = = [ plx.y) I p(xly) sy
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3.2 Joint and Conditional Entropy

Def. The entropy of a set Xi, Xp, ..., X, of random variables with
density p(x1, x2, ..., X,) is defined as

H(p(x1, %2, ...y Xn)) = —/p(xl,xz, oy Xn) In p(x1, X2, ooy Xn ) dXy - - - Xy

Def. If X and Y have a joint density p(x,y), the conditional
entropy H(X|Y) is defined as

HOXIY) = = [ plx.y) I p(xly) sy

Q. Why not — [ p(x|y) In p(x|y)dxdy?
Fact. H(X|Y)= H(X,Y) — H(Y)



3.3 Relative Entropy and Mutual Information

Def. The relative entropy (or Kullback-Leibler distance) D(p, g)
between two densities p and q is defined by

D(p,q) = /pln gdx

D is a measure of the inefficiency of assuming that the distribution
is g when the true distribution is p.

Def. The mutual information /(X, Y) between two random
variables with joint density p(x, y) is defined as

_ e PXY)
IX.v)= /p( )| p(X)p(y)d is

Note.
I(X,Y) = D(p(x,y), p(x)p(y)) = H(X) + H(Y) = H(X, Y).
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3.3 Relative Entropy and Mutual Information

Example. Let (X, Y) is a Gaussian with mean (0,0) and a
covariance K = (1 p)_

p 1
H(X) = H(Y) = 1In(2me) and H(X,Y) = % In(2me)?(1 — p?).
Therefore (X, Y) = H(X) + H(Y) — H(X,Y) = =3 In(1 - p?). If
p =20, X and Y are independent and the mutual information is 0.
If p==+1, X and Y are perfectly correlated and the mutual
information is infinite.
Note. X and Y are Gaussian and thus zero correlation implies
independence.



3.4 Properties of entropy, relative entropy, and mutual
information

Theorem.

D(p.q) >0
with equality iff p = g almost everywhere.
Proof.

—D(p,q) = fpln%dx
< Infp%dx from Jensen's inequality

ol (2)

<Inl1=0.

Corollary. /(X,Y) > 0 with equality iff X and Y are independent.



3.4 Properties of entropy, relative entropy, and mutual
information

Corollary. H(X|Y) < H(X) with equality iff X and Y are
independent.



3.4 Properties of entropy, relative entropy, and mutual
information

Corollary. H(X|Y) < H(X) with equality iff X and Y are
independent. That is, collecting data decreases uncertainty

(vay!).



3.4 Properties of entropy, relative entropy, and mutual
information

Theorem. (Chain rule for entropy)
H(X1, Xa, s Xa) = > H(Xi|X1, Xa, ..., Xic1).

Proof. Homework.
Corollary.
H(X1, X, ., Xa) < H(XP)

Hadamard’s inequality. If X is a Gaussian distribution with mean
0 and a covariance K, we have

|K| < M7 Kii

where |K]| is the determinant of K.



3.4 Properties of entropy, relative entropy, and mutual
information

In Lecture 1, we have seen that the probability density maximizing
entropy with a given mean and a variance is Gaussian. Now we
show the following general result.

Theorem. Let the random vector X € R" have zero mean and
covariance K. Then

1
H(X) < 5 In(2me)"|K|

with equality iff X is Gaussian is the covariance K and mean zero.
|K| is the determinant of K.

Proof. Let g(x) be any density satisfying [ g(x)xix;dx;dx; = Kj;
for all i,j. Let ¢x be the density of the Gaussian N(0, K). Then
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3.4 Properties of entropy, relative entropy, and mutual
information

Theorem. (Estimation error) For any one-dimensional random
variable X and estimator X,

- 1
E X—X2 > - 2H(X)
(X = RP] 2 500,
with equality iff X is Gaussian and X is the mean of X.
Proof. Let X be any estimator of X. Then

E[(X — X)?] > ming E[(X — X)?]

= E[(X — E[X])?] (4)
Var(X)
1 g2H(X)
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Homework

» Draw n values of the standard normal random variable, X.

» When Y = X2, calculate D(X, Y) using the sample. If you
use a histogram in a sense, change the number of bins and
check the change of the relative entropy.

» Compare the relative entropy with an analytic solution.



