Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Lecture 4: Parametric Inference

Statistical inference or **learning** is the process of using data to infer the distribution that generated the data.

Therefore, we can estimate statical functionals of the unknown distribution

Note that any map of a distribution is called a *statistical functional* of the distribution

$$F = F(P)$$
.

For example, for a distribution P(x) and its corresponding density p(x)

- \blacktriangleright $E[X] = \int xp(x)dx$
- median = $P^{-1}(1/2)$

For a sample of two random variables X and Y with a joint density p(x, y)

$$\triangleright$$
 $E[Y|X=x] = \int yp(x,y)/p(x)dy$

Example. Let $X_1, X_2, ..., X_n$ is a sample from a density p(x). Infer p(x) using the sample.

1. If we assume that p(x) is a Gaussian, we need to estimate only the mean and variance using the sample mean and variance

$$\hat{m} = \frac{1}{n} \sum_{i} X_{i}$$

and

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (X_i - \hat{m})^2$$

2. Without assuming any form for p(x), we estimate the p(x) using a histogram

Example. Let $X_1, X_2, ..., X_n$ is a sample from a density p(x). Infer p(x) using the sample.

1. If we assume that p(x) is a Gaussian, we need to estimate only the mean and variance using the sample mean and variance

$$\hat{m} = \frac{1}{n} \sum_{i} X_{i}$$

and

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (X_i - \hat{m})^2$$

2. Without assuming any form for p(x), we estimate the p(x) using a histogram

Example 1 is an example of *parametric inference* (where the unknown parameters are the mean and the variance). Example is an example of *nonparametric inference*.

Broadly speaking, inferential problems fall into one of the three types

- 1. Point estimation
- 2. Confidence set (interval for 1D)
- 3. Hypothesis testing

Let F be a statistical functional of an unknown distribution P and $\{X_i\}$ be a independent and identically distributed sample of P.

Point estimation provide a single best guess of F, often denoted by

$$\hat{F} = g(X_1, X_2, ..., X_n),$$

which is a function of the sample.

Let F be a statistical functional of an unknown distribution P and $\{X_i\}$ be a independent and identically distributed sample of P.

Point estimation provide a single best guess of F, often denoted by

$$\hat{F} = g(X_1, X_2, ..., X_n),$$

which is a function of the sample.

This means that if we have a different sample \hat{F} changes. To be more precise, \hat{F} is a random variable.

Let F be a statistical functional of an unknown distribution P and $\{X_i\}$ be a independent and identically distributed sample of P.

Point estimation provide a single best guess of F, often denoted by

$$\hat{F} = g(X_1, X_2, ..., X_n),$$

which is a function of the sample.

The distribution of \hat{F} is called the **sampling distribution** and its standard deviation is called the **standard error**, denoted by **se**.

$$\mathbf{se} = \sqrt{\textit{Var}(\hat{F})}$$

Let F be a statistical functional of an unknown distribution P and $\{X_i\}$ be a independent and identically distributed sample of P.

Point estimation provide a single best guess of F, often denoted by

$$\hat{F} = g(X_1, X_2, ..., X_n),$$

which is a function of the sample.

- If the expected value of the point estimator is equal to the true value F_{true} , then the estimator is called **unbiased**.
- ▶ If the estimator converges in probability to the true value as the sample size, n, increases, the estimator is called consistent.
- ► The estimator is asymptotically Normal if the estimator converges in distribution to a normal as the sample size increases.

The mean squared error (MSE) defined as

$$E[(\hat{\theta}-\theta)^2]$$

can be written as

$$\mathsf{MSE} = \mathsf{bias}(\hat{\theta})^2 + \mathit{Var}(\hat{\theta}).$$

Example. Let $X_1, X_2, ..., X_n$ is a sample of a Bernoulli(p). The estimator of p is given by

$$\hat{\rho} = \frac{1}{n} \sum X_i.$$

- \triangleright \hat{p} is unbiased.
- From the law of large numbers, it is also consistent.
- From the central limit theorem, it is asymptotically normal.
- ▶ The standard error $\mathbf{se} = \sqrt{Var(\hat{p})} = \sqrt{\frac{p(1-p)}{n}}$.
- ▶ The estimated **se** uses the estimated \hat{p} for the standard error

$$\hat{\mathsf{se}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$

4.1.2 Confidence Sets

Let $\{X_i\}$ be an independent, identically distributed sample. A $1-\alpha$ confidence set is a set C, which is a function of the sample, such that

$$\mu(F \in C) = 1 - \alpha.$$

That is, the probability that C traps the true value F is $1-\alpha$. **Example.** Let F is a scalar value. If an estimator \hat{F} is asymptotically normal and the sample size n is large, the $1-\alpha$ confidence interval C_n is given by

$$(\hat{F} - z_{\alpha/2}\hat{\mathbf{se}}, \hat{F} + z_{\alpha/2}\hat{\mathbf{se}})$$

where $z = \Phi^{-1}(1 - (\alpha/2))$ for the standard normal distribution Φ .

4.1.2 Confidence Sets

Let $\{X_i\}$ be an independent, identically distributed sample. A $1-\alpha$ confidence set is a set C, which is a function of the sample, such that

$$\mu(F \in C) = 1 - \alpha.$$

That is, the probability that C traps the true value F is $1 - \alpha$.

A frequently asked question for a data scientist position. The interpretation, "the probability of the true value F is in the set C is $1-\alpha$ " is an incorrect statement.

When we construct a confidence set C using a sample $\{X_i\}$, C is a random variable while the true value F is fixed. Thus, the definition of the confidence set

$$\mu(F \in C) = 1 - \alpha.$$

is about a probability of the random variable C, not F.

4.1.3 Hypothesis Testing

Hypothesis testing starts with a null hypothesis and check if the sample provide sufficient evidence to reject the theory. Check one of your favorite statistics books for details.

4.2 Parameteric Inference

Let $\{X_i\}$ be an IID sample of a distribution P. In the parametric inference, we assume that the form of the unknown distribution is parameterized by a set of parameters $\theta = (\theta_1, ..., \theta_m)$

$$P(x) = P(x; \theta).$$

If we have an estimate of the parameter, say $\hat{\theta}$, the estimator provides an estimate of the distribution $P(x; \hat{\theta})$.

Example.

- If we assume that the sample is from a Gaussian distribution with a mean m and a variance σ^2 , the parameter is a pair (m, σ^2) .
- ▶ If we assume that the sample is from a Bernoulli(p), the parameter is the mean p.

4.2 Parameteric Inference

We will consider two methods for parametric inference

- Method of Moments
- Max Likelihood Estimator (MLE)

4.2.1 Method of Moments

For a sample $X_1, X_2, ..., X_n$, the j-th moment is

$$\alpha_j(\theta) = E[X^j] = \int x^j p(x;\theta) dx$$
, i.e., a function of θ ,

where $p(x; \theta)$ is the parametrized density of the parametrized distribution $P(x; \theta)$. The *j*-th sample moment, $\hat{\alpha}_j$, is

$$\hat{\alpha}_j = \frac{1}{n} \sum_i X_i^j$$

If the size of the parameter θ is m, the **method of moments** estimator $\hat{\theta}$ is defined to be the value θ such that

$$\alpha_j(\hat{\theta}) = \hat{\alpha}_j, \quad j = 1, 2, ..., k.$$

4.2.1 Method of Moments

Example. Let $X_1, X_2, ..., X_n$ be an IID sample of Bernoulli(p).

- ▶ The size of parameter $\theta = p$ is 1.
- The first moment $\alpha_1(\theta) = \alpha_1(p) = p$ and the first sample moment $\hat{\alpha}_1$ is

$$\hat{\alpha}_1 = \frac{1}{n} \sum X_i.$$

▶ By setting $\alpha_1(\theta) = \hat{\alpha}_1$, we have

$$\hat{\theta} = \hat{\rho} = \frac{1}{n} \sum X_i.$$

4.2.1 Method of Moments

Example. Let $X_1, X_2, ..., X_n$ be an IID sample of Normal (m, σ^2) .

- ▶ The size of parameter $\theta = (m, \sigma^2)$ is 2.
- ▶ The first and the second moments are

$$\alpha_1(m, \sigma^2) = \mu, \quad \alpha_2(m, \sigma^2) = m^2 + \sigma^2$$

The sample first and the sample second moments are

$$\hat{\alpha}_1 = \frac{1}{n} \sum X_i, \quad \hat{\alpha}_2 = \frac{1}{n} \sum X_i^2$$

Solving the system of equations gives

$$\hat{m}u = \frac{1}{n}\sum X_i, \quad \hat{\sigma}^2 = \frac{1}{n}\sum (X_i - \hat{u})^2.$$

Note that σ^2 is biased (but consistent).

Let $X_1, X_2, ..., X_n$ be IID with a density $p(x; \theta)$. The joint distribution of the sample $p(x_1, x_2, ..., x_n; \theta)$ is

$$p(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^{n} p(x_i; \theta) = p(x_1; \theta) p(x_2; \theta) \cdots p(x_n; \theta)$$

This joint density as a function of θ is called the **likelihood** function

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n p(x_i; \theta).$$

The likelihood is the probability (density) of the sample under the assumption of the parametric model. Note that n is the sample size.

Warning. The likelihood function is not a density of θ .

Definition. The maximum likelihood estimator (MLE) $\hat{\theta}$ is the value θ that maximizes the likelihood function $\mathcal{L}_n(\theta)$.

Definition. The **maximum likelihood estimator** (MLE) $\hat{\theta}$ is the value θ that maximizes the likelihood function $\mathcal{L}_n(\theta)$.

Example. Let $X_1, X_2, ..., X_n$ is IID Bernoulli(p). The likelihood function is

$$\mathcal{L}_n(p) = \prod_i^n p^{X_i} (1-p)^{1-X_i} = p^{S} (1-P)^{n-S}$$

where $S = \sum X_i$.

Hence,

$$\ln \mathcal{L}(p) = S \ln p + (n - S) \ln(1 - p).$$

Take the derivative and set it equal to zero gives

$$\hat{p} = \frac{S}{n}$$
.

Definition. The **maximum likelihood estimator** (MLE) $\hat{\theta}$ is the value θ that maximizes the likelihood function $\mathcal{L}_n(\theta)$.

Example. Let $X_1, X_2, ..., X_n$ is IID Normal (m, σ^2) . The likelihood function after a scaling is

$$\mathcal{L}(m,\sigma) = \Pi \frac{1}{\sigma} \exp\left(-\frac{1}{2\sigma^2} (X_i - m)^2\right) = \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2} \sum_i (X_i - m)^2\right)$$
$$= \sigma^{-n} \exp\left(-\frac{nS^2}{2\sigma^2}\right) \exp\left(-\frac{n(\overline{X} - m)^2}{2\sigma^2}\right)$$

where $\overline{X} = \frac{1}{n} \sum X_i$ and $S^2 = \frac{1}{n} \sum (X_i - m)^2$. The log-likelihood is

$$I(m,\sigma) = -n \ln \sigma - \frac{nS^2}{2\sigma^2} - \frac{n(\overline{X} - m)^2}{2\sigma^2}.$$

Solving the gradient of $I(m, \sigma)$ equal to zero gives

$$\hat{m} = \overline{X}$$
 and $\hat{\sigma} = S$.

Exercise. Let $X_1, X_2, ..., X_n$ is IID Uniform $(0, \theta)$. Find the MLE of θ .

Under certain conditions on the model, the MLE has the following properties

- 1. It is **consistent**. That is, $\hat{\theta}_n \to \theta_{true}$ in probability.
- 2. It is **equivalent**. If $\hat{\theta}_n$ is the MLE of θ , then $g(\hat{\theta})$ is the MLE of $g(\theta)$.
- 3. It is **asymptotically normal**. $\hat{\theta}_n \theta_{true}$ converges in distribution to $N(0, \mathbf{se}^2)$.
- 4. It is **asymptotically optimal**. That is, roughly speaking, among all well-behaved estimators, the MLE has the smallest variance, at least for large samples.
- 5. It is approximately the **Bayes estimator**.

Idea of the proof for the consistency.

▶ Maximizing $\mathcal{L}_n(\theta)$ is equivalent to maximizing

$$M_n(\theta) = \frac{1}{n} \sum \ln \frac{p(X_i; \theta)}{p(X_i; \theta_{true})}.$$

From the law of large numbers, M_n converges to the expected value

$$E\left(\ln \frac{p(X;\theta)}{p(X;\theta_{true})}\right) = \int \ln \frac{p(x;\theta)}{p(x;\theta_{true})} p(x;\theta_{true}) dx$$
$$= -D(p(x;\theta_{true}), p(x;\theta)) \le 0$$

with equality when $\theta = \theta_{true}$.

Idea of the proof for the asymptotically normal property.

For $I_n(\theta) = \log \mathcal{L}_n(\theta)$

$$0 = I'_n(\hat{\theta}) \approx I'_n(\theta) + (\hat{\theta} - \theta)I''_n(\theta)$$

which yields

$$\hat{\theta} - \theta = -\frac{l_n'(\theta)}{l_n''(\theta)}$$

From the central limit theorem, $I_n'(\theta)/\sqrt{n}$ converges in distribution to $N(0,I(\theta))$ where $I(\theta)$ is the variance of $\frac{\partial}{\partial x} \ln p(x;\theta)$. Also, from the law of large numbers, $I_n''(\theta)/n$ converges in probability to the mean of $\frac{\partial^2}{\partial x^2} \ln p(x;\theta)$, which is $I(\theta)$.

Exercise. Show that the mean of $\frac{\partial}{\partial x} \ln p(x; \theta)$ is 0.

Exercise. Show that the mean of $\frac{\partial^2}{\partial x^2} \ln p(x; \theta)$ is the variance of $\frac{\partial}{\partial x} \ln p(x; \theta)$, that is $I(\theta)$.

► The score function is the first derivative of the parametrized density

$$s(X;\theta) = \frac{\partial}{\partial x} \ln p(x;\theta).$$

▶ The variance of the sum of the score functions is called **Fisher** information

$$I_n(\theta) = Var(\sum_{i=1}^{n} s(X_i; \theta)).$$

That is, the Fisher information is $nI(\theta)$ where $I(\theta)$ is the variance of the score function.

4.2.4 The Expectation-Maximization (EM) Algorithm

Goal: Find a θ that maximize $\mathcal{L}_n(\theta)$, i.e., the MLE estimator. **Algorithm:**

- 1. Pick an initial value θ^0 . For j = 1, 2, ..., repeat steps 1 and 2
- 2. (The E-step): Calculate

$$J(\theta|\theta^{j}) = E\left(\ln\frac{\mathsf{\Pi}p(x_{i}, y_{i}; \theta)}{\mathsf{\Pi}p(x_{i}, y_{i}; \theta^{j})}|x\right)$$

This expectation is over the missing variable $\{y_i\}$ treating θ^j and $\{x_i\}$ are fixed.

3. Find θ^{j+1} maximizing $J(\theta|\theta^j)$.

4.2.4 The Expectation-Maximization (EM) Algorithm

Idea of the proof. We want to show that the procedure increases the likelihood, that is, $\mathcal{L}(\theta^{j+1}) \geq \mathcal{L}(\theta^j)$.

From

$$J(\theta^{j+1}|\theta^{j}) = E\left(\ln\frac{\Pi p(x_{i}, y_{i}; \theta^{j+1})}{\Pi p(x_{i}, y_{i}; \theta^{j})}|\{x_{i}\}\right)$$
$$= \ln\frac{\mathcal{L}(\theta^{j+1})}{\mathcal{L}(\theta^{j})} + E\left(\ln\frac{\Pi p(y_{i}|x_{i}; \theta^{j+1})}{\Pi p(y_{i}|x_{i}; \theta^{j})}|\{x_{i}\}\right)$$

we have

$$\ln \frac{\mathcal{L}(\theta^{j+1})}{\mathcal{L}(\theta^{j})} = J(\theta^{j+1}|\theta^{j}) - E\left(\ln \frac{\Pi p(y_{i}|x_{i};\theta^{j+1})}{\Pi p(y_{i}|\{x_{i}\};\theta^{j})}|\{x_{i}\}\right)$$
$$= J(\theta^{j+1}|\theta^{j}) + D(f_{j}, f_{j+1}) \ge 0$$

where $f_j = \prod p(y_i|x_i;\theta^j)$.

4.2.4 The Expectation-Maximization (EM) Algorithm

Example. Let $X_1, X_2, ..., X_n$ be a sample from a parametrized density

$$p(x) = \frac{1}{2}\phi(x; \mu_1, 1) + \frac{1}{2}\phi(x; \mu_0, 1)$$

where $\phi(x; \mu_i, 1)$ is a Gaussian density with a mean μ_i and a variance 1. Find the MLE.