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Lecture 5: Nonparametric Inference



5.1 Empirical Distribution Function

Let X1,X2, ...,Xn be an independent, identically distributed (IID)
sample from a distribution P(x).
Goal of nonparametric inference: Infer P(x) without assuming any
special structure or parametrization for P(x).
The empirical distribution P̂n, an estimator of P using the sample
{Xi} of size n, is the CDF that puts mass 1/n at each data point

P̂n(x) =

∑n
i I (Xi ≤ x)

n

where

I (Xi ≤ x) =

{
1 if Xi ≤ x ,
0 if Xi > x .

Exercise. Show that
E (P̂n(x)) = P(x) and Var(P̂n(x)) = P(x)(1−P(x))

n .
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5.1 Empirical Distribution Function

Theorem. (Glivenko-Cantelli) For each x and ε > 0,

µ(|P̂(x)− P(x)| ≥ ε)→ 0 as n→∞.



5.2 Curve Estimation (Smoothing)

Goal of curve estimation: Approximate the unknown density from
a sample.
An example of curve estimation: Histograms.
Let g(x) is the unknown true density and {Xi} be IID of size n
from g(x). The estimator of g using {Xi} is denoted by

ĝ(x ; {Xi})

For simplicity, we often use ĝn(x) for ĝ(x ; {Xi}).

Integrated squared error

L(g , ĝn) =

∫
(g(u)− ĝn(u))2du.

Risk (or mean integrated squared error)

R(g , ĝn) = E [L(g , ĝn)].
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R(g , ĝn) = E [L(g , ĝn)].



5.2 Curve Estimation (Smoothing)

The risk can be written as

R(g , ĝn) =

∫
b2(x)dx +

∫
v(x)dx

where
b(x) = E [ĝn(x)] = g(x)

is the bias of ĝn(x) at a fixed x and

v(x) = Var(ĝn(x))

is the variance of ĝn(x) at a fixed x .



5.2.1 Histogram

Let X1,X2, ...,Xn be IID on [0, 1] with density p. Let m be the
number of bins where each bin Bi , i = 1, 2, ...,m is defined by
Bi = [ i−1m , i

m ).
Define the binwidth h = 1/m and let νj be the number of
observations in Bi and p̂i =

νj
n .

The histogram estimator is defined by

p̂n(x) =
p̂i
h

if x ∈ Bi

which can be written succinctly as

p̂n(x) =
n∑

i=1

p̂i
h
I (x ∈ Bi )

where I (x ∈ Bi ) = 1 if x ∈ Bi and 0 otherwise.



5.2.1 Histogram

Theorem. For fixed x ,m, let Bj be the bin containing x . Then

E [p̂n(x)] =
pj
h

and

Var(p̂n(x)) =
pj(1− pj)

nh2
.

Theorem. Support that
∫
p′(x)2dx <∞. Then

R(p̂n, p) ≈ h2

12

∫
(p′(u))2du +

1

nh
.

The value h∗ that minimizes this is

h∗ =
1

n1/3

(
6∫

(p′(u))2du

)1/3

With this choice of binwidth,

R(p̂n, p) ≈ C

n2/3
.



5.2.2 Kernel Density Estimation

Given a Kernel K and a positive bandwidth h, the kernel density
estimator (KDE) is defined to be

p̂(x) =
1

n

n∑
i

1

h
K (

x − Xi

h
)

I KDE is smoother than histograms.

I KDE also converges faster to the true density than histograms.

A kernel is defined to be any smooth function K such that

I K (x) ≥ 0,

I
∫
K (x)dx = 1,

I
∫
xK (x)dx = 0, and

I σ2K =
∫
x2K (x)dx > 0.



5.2.2 Kernel Density Estimation

Theorem Under some assumptions on p and K ,

R(p, p̂n) ≈ 1

4
σ4Kh

4

∫
(p′′(x))2 +

K 2(x)dx

nh

where σ2K =
∫
x2K (x)dx . The optimal bandwidth is

h∗ =
c
−2/5
1 c

1/5
2 c

−1/5
3

n1/5

where c1 =
∫
x2K (x)dx , c2 =

∫
K (x)2dx and c3 =

∫
(p′′(x))2dx .

With this choice of bandwidth,

R(p, p̂n) ≈ c4
n4/5

for some constant c4 > 0.



5.3 Regression

Let we have a sample (X1,Y1), (X1,Y1), ..., (Xn,Yn). Most of you
are familiar with a regression function as the minimizer r(x) of the
residual sums of squares

RSS =
n∑
i

(yi − r(xi ))2.

I Our definition of the regression function r(x) is

r(x) = E [Y |X = x ] =

∫
yf (y |x)dy .

I We approach the regression as a statistical inference problem.
That is, we infer the joint density of (X ,Y ), say p(x , y), to
estimate the conditional expected value.

I We will discuss (i) parametric and (ii) nonparametric
regression functions.



5.3.1 Parametric Regression

For simplicity, we will consider only linear models.

I We assume that the conditional density of Y for a given
X = x is a Gaussian with a mean α0 + α1X and a variance σ2

p(y |x) = φ(y ;α0 + α1x , σ
2)

where φ is a Gaussian density.

I Thus, the density is parametrized by α0 and α1,

p(y |x ;α0, α1)

and their joint density is

p(x , y) = p(y |x)p(x).



5.3.1 Parametric Regression

I The likelihood function is

Ln(α0, α1) = Πn
i p(yi |xi ;α0, α1)p(xi )

I Log-likelihood function is

ln(α0, α1) =
n∑
i

ln p(yi |xi ;α0, α1) +
n∑
i

p(xi )

I The last term is independent of the parameters.

I Thus, MLE is the maximizer of the following

−
n∑
i

(yi − α0 − α1xi )
2,

that is, the minimizer of RSS.



5.3.2 Nonparametric Regression

I The definition of the regression function does not change. The
regression function r(x) is the conditional expected value of Y

r(x) = E [Y |X = x ].

I Estimate the joint density p(x , y) using a nonparametric
method, for example, KDE.

I Use the estimated density for the calculation of the regression
function

r(x) = E [Y |X = x ] =

∫
yp(y |x)dy =

∫
yp(x , y)dy∫
p(x , y)dy



5.3.2 Nonparametric Regression

The Nadaraya-Watson nonparametric regression.

r̂(x) =
n∑
i

wi (x)yi

where K is a Kernel and the weights wi (x) are given by

wi (x) =
K ( x−xih )∑n
j=1 K (

x−xj
h )

.



5.3.2 Nonparametric Regression
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Exercise. Derive the Nadaraya-Watson nonparametric regression.



5.4 Bootstrap

The bootstrap is a method for estimating standard errors se, i.e.,
the standard deviation of an estimator T̂ .

1. Estimate VarP(Tn) with VarP̂(Tn).

2. Approximate VarP̂(Tn) using simulation.

VarP(Tn) is the variance of Tn with respect to P.
How do we estimate VarP̂(Tn)?

1. Draw {X ∗i } from P̂.

2. Compute T ∗n using {X ∗i }.
3. Repeat steps 1 and 2 M times, T ∗n,1, ...,T

∗
n,M .

4. Estimate VarP̂(Tn) = 1
M

∑M
m

(
T ∗n,m − 1

M

∑
T ∗n,m

)2
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Homework

1. Find and learn a KDE library of your choice.
2. Let X be a random variable with a density

1
3φ(x ; 0, 1) + 2

3φ(x ; 1, 1) where φ(x ;m, σ2) is a Gaussian
density with a mean m and a variance σ2.

3. Generate an IID sample of X .
4. From the sample, {Xi}, estimate the density using (i)

histogram, and (ii) KDE.
5. Compute the relative entropy using the estimated densities.
6. Plot the relative entropy as a function of the sample size n.
7. Let Y = X 2. Find the density of Y (numerically and

analytically).
8-9 For a Gaussian distribution N(1, 1), we estimate the mean
using the sample mean of a sample {Xi}

m̂ =
1

n

∑
i

Xi .

8. Calculate the variance of m̂.
9. Estimate the variance of m̂ using the bootstrap.


