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6.1 Bayesian inference

In the estimation problem of a variable 6 of interest using a sample

a sample {X;},
the conditional probability density of # for the given sample {X;} is

given by
W pO)P({Xi}]6)
PORXY) = T @) p({X110)d0

from the Bayes’ theorem.
» p(0) is a prior density of 6.
» p({X;}|0) is the likelihood of {X;}.

» The denominator is a normalization constant.



6.1 Bayesian inference

In Lecture 4, we discussed a parametric inference problem using a
parameter 6 and a sample {X;}.

» Likelihood £,(8) = N7p(X;; ).

» The likelihood is not a probability density of 6.

> 0 is a fixed value and we make probability statements only for
the random variables related to the sample for an increasing
sample size.

In Bayesian inference,

> We make probability statements about @, that is, 6 is a
random variable.

» The probability describes degree of belief.
» For example, "the probability that it will rain tomorrow is .35"



6.1 Bayesian inference
What do we do with the posterior density?

» For a point estimate, we can use the mean of mode of the
posterior

> We can also obtain a Bayesian interval estimate C

u(6 € Cl{x}) = /C p(O1{X:})d0 =1 - o

Here, we assume that 6 is a random variable and {X;} is fixed.



6.2 Priors

> If we assume a constant for the prior, that is, a uniform
density, the mode of the posterior is equal to the maximum
likelihood estimator (MLE) because

p(01{Xi}) = p({Xi}10).

Thus, MLE is related to the Bayesian estimator.

» However, this does not always hold; if 8 € R, there is no
uniform density on R because

/cdx:oo.
R

for any constant ¢ > 0.



6.2 Priors

P> A constant prior is not transformation invariant.
Let's assume a uniform prior density for 6 € (0,1) because of
lack of any prior information. For a transformation of 0,
1 =1In(0/(1 —0)), we also have no prior information and we
may assume a uniform prior density for 1.
It is a straightforward exercise to check that the density of 1 is

e¥

p(y) = A+

if we assume a uniform density for 6.



Exercise. Let X1, X, ..., X, be 1ID of N(6,52) where 6 is unknown
and o is known. Suppose we take as a prior 6 is N(aprior, b?) where
aprior and b are known constants.

» The posterior is Gaussian, that is,
P(01{Xi}) = G(; apost, baost) Where ¢ is a Gaussian density.

P> The posterior mean and variance are

1
dpost = k ( ZX> 1 k apr:or = apr/or+k (n ZXi - aprior)

where
=
k= —¢
L+
and
b%c?/n

b2 —_
post = 2 o?/n



6.3 Kalman Filtering

» Kalman filter was co-invented and developed by R.E. Kalman
(National Medal of Science 2009).

» Kalman filter is also known as linear quadratic estimation
(LQE).

» Kalman filter uses a series of measurements observed over
time to estimate unknown variables.

» Kalman filter estimate the conditional density of unknown
variables at each time when measurements are available.



6.3 Kalman Filtering

1. Forecast (prediction) 2. Analysis (correction)
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Um+1,post: Posterior mean at the m + 1-th step.
Um+1,prior: Prior mean at the m + 1-th step.
Vm+1: Observation at the m + 1-th step.

Um+1,post = Um+1,prior + K(Vm+1 - Um+17prior)
where K is the Kalman gain
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