Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Lecture 6: Bayesian Inference

6.1 Bayesian inference

In the estimation problem of a variable θ of interest using a sample a sample $\{X_i\}$,

the conditional probability density of θ for the given sample $\{X_i\}$ is given by

$$p(\theta|\{X_i\}) = \frac{p(\theta)p(\{X_i\}|\theta)}{\int p(\theta)p(\{X_i\}|\theta)d\theta}$$

from the Bayes' theorem.

- \triangleright $p(\theta)$ is a prior density of θ .
- $ightharpoonup p(\{X_i\}|\theta)$ is the likelihood of $\{X_i\}$.
- ▶ The denominator is a normalization constant.

6.1 Bayesian inference

In Lecture 4, we discussed a parametric inference problem using a parameter θ and a sample $\{X_i\}$.

- ▶ Likelihood $\mathcal{L}_n(\theta) = \prod_{i=1}^n p(X_i; \theta)$.
- ▶ The likelihood is not a probability density of θ .
- heta is a fixed value and we make probability statements only for the random variables related to the sample for an increasing sample size.

In Bayesian inference,

- We make probability statements about θ , that is, θ is a random variable.
- ▶ The probability describes degree of belief.
- ► For example, "the probability that it will rain tomorrow is .35"

6.1 Bayesian inference

What do we do with the posterior density?

- For a point estimate, we can use the mean of mode of the posterior
- ▶ We can also obtain a Bayesian interval estimate C

$$\mu(\theta \in C|\{X_i\}) = \int_C p(\theta|\{X_i\})d\theta = 1 - \alpha.$$

Here, we assume that θ is a random variable and $\{X_i\}$ is fixed.

6.2 Priors

▶ If we assume a constant for the prior, that is, a uniform density, the mode of the posterior is equal to the maximum likelihood estimator (MLE) because

$$p(\theta|\{X_i\}) \approx p(\{X_i\}|\theta).$$

Thus, MLE is related to the Bayesian estimator.

▶ However, this does not always hold; if $\theta \in \mathbb{R}$, there is no uniform density on \mathbb{R} because

$$\int_{\mathbb{R}} c dx = \infty.$$

for any constant c > 0.

6.2 Priors

A constant prior is **not** transformation invariant. Let's assume a uniform prior density for $\theta \in (0,1)$ because of lack of any prior information. For a transformation of θ , $\psi = \ln(\theta/(1-\theta))$, we also have no prior information and we may assume a uniform prior density for ψ . It is a straightforward exercise to check that the density of ψ is

$$p(\psi) = \frac{e^{\psi}}{(1 + e^{\psi})^2}$$

if we assume a uniform density for θ .

Exercise. Let $X_1, X_2, ..., X_n$ be IID of $N(\theta, \sigma^2)$ where θ is unknown and σ is known. Suppose we take as a prior θ is $N(a_{prior}, b^2)$ where a_{prior} and b are known constants.

- The posterior is Gaussian, that is, $p(\theta|\{X_i\}) = \phi(x; a_{post}, b_{post}^2)$ where ϕ is a Gaussian density.
- ► The posterior mean and variance are

$$a_{post} = k \left(\frac{1}{n} \sum_{i} X_{i}\right) + (1-k)a_{prior} = a_{prior} + k \left(\frac{1}{n} \sum_{i} X_{i} - a_{prior}\right)$$

where

$$k = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{h^2}}$$

and

$$b_{post}^2 = \frac{b^2 \sigma^2 / n}{b^2 + \sigma^2 / n}$$

6.3 Kalman Filtering

- ► Kalman filter was co-invented and developed by R.E. Kalman (National Medal of Science 2009).
- Kalman filter is also known as linear quadratic estimation (LQE).
- Kalman filter uses a series of measurements observed over time to estimate unknown variables.
- Kalman filter estimate the conditional density of unknown variables at each time when measurements are available.

6.3 Kalman Filtering

1. Forecast (prediction)

2. Analysis (correction)

 $u_{m+1,post}$: posterior mean at the m+1-th step.

 $u_{m+1,prior}$: prior mean at the m+1-th step.

 v_{m+1} : observation at the m+1-th step.

$$u_{m+1,post} = u_{m+1,prior} + K(v_{m+1} - u_{m+1,prior})$$

where K is the Kalman gain

$$K = \frac{\sigma_{m+1,prior}^2}{\sigma_{obs}^2 + \sigma_{m+1,prior}^2}$$

