# Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Lecture 7: Monte Carlo

For a function f(x) which is integrable over  $[0,1]^d$ , we want to calculate the mean value of f

$$I[f] = \int_{[0,1]^d} f(x) dx = \overline{f}.$$

**Setting**: We assume that we know how to evaluate f(x) but there is not simple formula for the antiderivative of f(x).

- If we use a grid-based methods, the **convergence rate** is  $\mathcal{O}(n^{-k/d})$  where k is the order of the grid-based method.
- ► The Monte Carlo integration draws a sample  $\{x_i\}$  from the inform distribution on  $[0,1]^d$  and estimate the integral

$$I[f] \approx \hat{I}_n[f] = \frac{1}{n} \sum_i f(x_i).$$

► The convergence rate of the Monte Carlo integration is  $\mathcal{O}(n^{-1/2})$ .



▶ The probabilistic interpretation of I[f] is that I[f] is an expected value of f(x) where x has the uniform density in  $[0,1]^d$ 

$$I[f] = E[f] = \int_{[0,1]^d} f(x) dx$$

From the law of large numbers,

$$\hat{I}_n[f] \to I[f].$$

► Also,  $\hat{l}_n[f]$  is unbiased

$$E[\hat{I}_n[f]] = I[f].$$

Let  $e_n[f]$  be the error of the Monte Carlo estimator

$$e_n[f] = I_n[f] - I[f].$$

From the Central limit theorem, for *n* large, we have

$$e_n[f] \approx \sigma n^{-1/2} \nu$$

in which  $\nu$  is a standard normal random variable and the constant  $\sigma^2$  is the variance of f, that is,

$$\sigma^2 = \left(\int (f - I[f])^2\right)^{1/2}.$$

Now we are interested in

$$I[fp] = \int_{[0,1]^d} f(x)p(x)dx$$

where  $p(x) \ge 0$ ,  $\int_{[0,1]^d} p(x) dx = 1$ .

There are two approaches for this problem

1. Draw a sample  $\{x_i\}$  of size n from the uniform density of  $[0,1]^d$  and

$$I[fp] \approx \frac{1}{n} \sum_{i} f(x_i) p(x_i).$$

2. Or draw a sample  $\{x_i\}$  of size n from the density p(x) and

$$I[fp] = I_p[f] \approx \frac{1}{n} \sum_i f(x_i).$$

How do you decide which method to use?

How do you decide which method to use? Check the variances

$$\sigma_1^2 = \int (fp - I[fp])^2 dx$$

and

$$\sigma_2^2 = \int (f - I_p[f])^2 p dx.$$

Choose the method with a smaller variance.

# 7.2 Sampling Methods

Now we are concerned with a sampling method to generate a sample from a given density p(x).

- Transformation method
- Acceptance-rejection method

#### 7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation X = f(Y) such that the density of X is p(x).

**Example.** Cauchy distribution  $p(x) = \frac{1}{\pi(1+x^2)}$ .

**Example.** Gaussian distribution  $p(x; 0, 1) = \frac{1}{\sqrt{2\pi}} e^{-(x)^2/2}$ 

## 7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation X = f(Y) such that the density of X is p(x).

**Example.** Cauchy distribution  $p(x) = \frac{1}{\pi(1+x^2)}$ .

**Example.** Gaussian distribution  $p(x; 0, 1) = \frac{1}{\sqrt{2\pi}} e^{-(x)^2/2}$ 

$$P_X(x) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$
  
=  $rac{1}{2} + rac{1}{2} erf(x/\sqrt{2})$ 

where  $erf(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$ , the error function.

$$y = P_Y(y) = P_X(x) = \frac{1}{2} + \frac{1}{2}erf(x/\sqrt{2})$$
  
 $x = \sqrt{2}erf^{-1}(2y - 1).$ 

## 7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation X = f(Y) such that the density of X is p(x).

**Example.** Cauchy distribution  $p(x) = \frac{1}{\pi(1+x^2)}$ .

**Example.** Gaussian distribution  $p(x; 0, 1) = \frac{1}{\sqrt{2\pi}} e^{-(x)^2/2}$ 

$$P_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$
  
=  $\frac{1}{2} + \frac{1}{2} erf(x/\sqrt{2})$ 

where  $erf(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$ , the error function.

$$y = P_Y(y) = P_X(x) = \frac{1}{2} + \frac{1}{2}erf(x/\sqrt{2})$$
  
 $x = \sqrt{2}erf^{-1}(2y - 1).$ 

Another method: Box-Muller method.



# 7.2.2 Acceptance-rejection method

For a given density p(x), suppose that we know a function q(x) satisfying

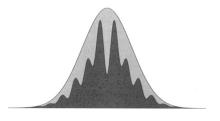
$$q(x) \geq p(x),$$

and that we have a way to sample from the density

$$\tilde{q}(x) = q(x)/I[q].$$

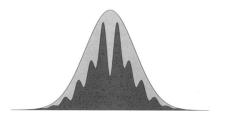
- Pick two random variables, x' and y, in which x' is a trial variable chosen according to  $\tilde{q}(x')$ , and y is a decision variable chosen according to the uniform density on 0 < y < 1.
- Accept if 0 < y < p(x')/q(x')
- ▶ Reject if p(x')/q(x') < y < 1.

# 7.2.2 Acceptance-rejection method



\* black: density of interest, p(x), \* gray: Gaussian, q(x)

# 7.2.2 Acceptance-rejection method



\* black: density of interest, p(x), \* gray: Gaussian, q(x) **Idea of Proof.** 

$$p(x) = \frac{p(x)}{q(x)}\tilde{q}(x)I[q]$$
$$= \int_0^1 I(\frac{p(x)}{q(x)} > y)dy\tilde{q}(x)I[q]$$

where  $I(\frac{p(x)}{q(x)}>y)=1$  if  $\frac{p(x)}{q(x)}>y$  and 0 otherwise. So,

$$\int f(x)p(x)dx = \int \int_0^1 f(x)I(\frac{p(x)}{q(x)} > y)dy\,\tilde{q}(x)I[q]dx$$



# 7.3 Accuracy and Improvements

In Monte Carlo integration  $I[fp] = \int fp dx$ , the error e and the number n of samples are related by

$$e = \mathcal{O}(\sigma n^{-1/2}),$$
  
$$n = \mathcal{O}((\sigma/e)^2).$$

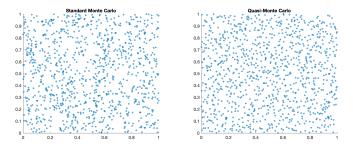
where  $\sigma$  is the variance of f (or fp).

There are two approaches to improve the accuracy

- Increase the convergence rate
- or decrease the variance, i.e., variance reduction.

## 7.3.1 Quasi-Monte Carlo

- ► A deterministic sequence, not random
- Maintains uniformity
- ► Convergence rate  $\mathcal{O}((\ln n)^d n^{-1})$ .



Standard Monte Carlo (left) and Quasi-Monte Carlo (right) samples of the same size 1000.

**Method: Antithetic variates** For a sample value x where m is a mean of p(x), also use the value x' = m - (x - m). That is, if  $\{x_i\}$  is a sample of size n,

$$I[fp] = I_p[f] \approx \frac{1}{2n} \sum_{i}^{n} (f(x_i) + f(m - (x_i - m))).$$

**Motivation.** If the standard deviation of p(x), say  $std_p$ , is small,

$$f(x) = f(m) + f'(m)std_p\tilde{x} + \mathcal{O}(std_p^2)$$

where  $x = std_p \tilde{x}$ .

**Method: Control variates** If there is a function g(x) such that g is similar to f and  $I_p[g] = \int g(x)p9x)dx$  is known,

$$\int f(x)p(x)dx = \int (f(x)-g(x))p(x)dx + \int g(x)p(x)dx.$$

That is, the control variates is effective if the variance of (f - g) is smaller than the variance of f(x).

One may try the following idea to reduce the variance further. Introduce a multiplier  $\boldsymbol{\lambda}$ 

$$\int f(x)p(x)dx = \int (f(x) - \lambda g(x))p(x)dx + \lambda \int g(x)p(x)dx.$$

Use  $\lambda$  minimizing the variance of  $f - \lambda g$ .

**Method:** Matching moments method Let  $m_1$  and  $m_2$  be the first and the second moments of p(x). Also let  $\alpha_1$  and  $\alpha_2$  are the first and the second sample moments of a sample  $\{x_i\}$ .

Then, instead of  $\{x_i\}$ , use the following transformed sample  $\{y_i\}$  that preserves the correct moments up to the second order

$$y_i = (x_i - \alpha_1)c + m_1$$

where 
$$c=\sqrt{rac{m_2-m_1^2}{lpha_2-lpha_1^2}}.$$

**Exercise.** Show that the first two sample moments of  $\{y_i\}$  are equal to the true moments  $m_1$  and  $m_2$ .

Method: Stratification For simplicity, let us consider an interval  $\Omega = [0,1]$  and a problem of

$$\int_{[0,1]} f(x) dx.$$

For a fixed m>0, divide [0,1] into M equal subintervals  $\Omega_k=[\frac{k-1}{M},\frac{k}{m}].$ 

Also for simplicity, assume that the sample size n is a multiple of m. Then, for each  $k \leq m$ , sample n/m points  $\{x_i^k\}$  uniformly distributed in  $\Omega_k$ .

$$\int_{[0,1]} f(x) dx \approx \frac{1}{n} \sum_{k=1}^{m} \sum_{i=1}^{n/m} f(x_i^k).$$

Then the error e is

$$e \approx n^{-1/2} \sigma_s$$

where 
$$\sigma_s^2 = \sum_k^m \int_{\Omega_k} (f(x) - \overline{f}_k)^2 dx$$
 and  $\overline{f}_k = \int_{\Omega_k} f(x) dx$ .

Method: Stratification

**Claim.** The variance  $\sigma_s^2$  is smaller than the variance without stratification  $\sigma^2 = \int_{[0,1]} (f - \overline{f})^2 dx$  where  $\overline{f} = \int_{[0,1]} f(x) dx$ .

Method: Stratification

**Claim.** The variance  $\sigma_s^2$  is smaller than the variance without stratification  $\sigma^2 = \int_{[0,1]} (f-\overline{f})^2 dx$  where  $\overline{f} = \int_{[0,1]} f(x) dx$ . **Idea of proof.** The minimizer c of  $\int_{\Omega_k} (f(x)-c)^2 dx$  is

$$\overline{f}_k = \int_{\Omega_k} f(x) dx.$$

# 7.4 Example

We want to calculate

$$p = \int_2^\infty \frac{1}{\pi (1 + x^2)} dx = 0.15$$

- Estimator 1:  $\hat{p}_1 = \frac{1}{n} \sum_{i=1}^{n} I(X_i > 2)$  where  $\{X_i\}$  is from Cauchy
- Estimator 2:  $\hat{p}_2 = \frac{1}{2n} \sum_{i=1}^{n} I(|X_i| > 2)$  where  $\{X_i\}$  is from Cauchy
- Estimator 3:  $\hat{p}_3 = \frac{1}{2} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\pi(1+X_i)^2}$  where  $\{X_i\}$  is from Uniform[0,2].
- ► Estimator 4:  $\hat{p}_4 = \frac{1}{n} \sum_{i}^{n} \frac{X_i^{-2}}{\pi(1+X_i^{-2})}$  where  $\{X_i\}$  is from Uniform[0,1/2].

## Homework

1. Calculate the variances of estimator 1,2,3 and 4 in the previous slide (show your work).