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7.1 Monte Carlo Integration

For a function f(x) which is integrable over [0,1]¢, we want to
calculate the mean value of f

I1[f] = /[0,1]d f(x)dx = f.

Setting: We assume that we know how to evaluate f(x) but there
is not simple formula for the antiderivative of f(x).

> If we use a grid-based methods, the convergence rate is
O(n=k/?) where k is the order of the grid-based method.

» The Monte Carlo integration draws a sample {x;} from the
inform distribution on [0,1]¢ and estimate the integral

1T ~ Bh[f] = % > )

» The convergence rate of the Monte Carlo integration is
O(n=1/2).



7.1 Monte Carlo Integration

» The probabilistic interpretation of /[f] is that /[f] is an
expected value of f(x) where x has the uniform density in
[0,1]¢

I[f] = E[f] :/ f(x)dx
[0,1]¢
» From the law of large numbers,
In[f] — 1[f].
> Also, I,[f] is unbiased

E[I[f1] = 111].



7.1 Monte Carlo Integration

» Let e,[f] be the error of the Monte Carlo estimator
enlf] = Ia[f] — I[f].
» From the Central limit theorem, for n large, we have

1/2

enlf] = on=*/*v

in which v is a standard normal random variable and the
constant o2 is the variance of f, that is,

o (/(f - /[f])2>1/2.



7.1 Monte Carlo Integration

Now we are interested in
ol = | FGpx)ox
[0,1]¢

where p(x) > 0, f[o e P(x)dx = 1.
There are two approaches for this problem

1. Draw a sample {x;} of size n from the uniform density of
[0,1]7 and

1[fp] ~ % Z f(xi)p(xi)-

2. Or draw a sample {x;} of size n from the density p(x) and

116] = o] ~ 3 £



7.1 Monte Carlo Integration

How do you decide which method to use?



7.1 Monte Carlo Integration

How do you decide which method to use?
Check the variances

7t = [ (o~ 1ol o

and
73 = [(F ~ piF)?px

Choose the method with a smaller variance.



7.2 Sampling Methods

Now we are concerned with a sampling method to generate a
sample from a given density p(x).

» Transformation method

» Acceptance-rejection method



7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation

X = f(Y) such that the density of X is p(x).
Example. Cauchy distribution p(x) = m

Example. Gaussian distribution p(x;0,1) =



7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation
= f(Y) such that the density of X is p( ).

Example Cauchy distribution p(x) = (1+X2)

Example. Gaussian distribution p(x;0,1) = \/%e_(xfp

1 X
PX(X) = \/ﬂ/ eit2/2dt

- 1 + 1erf(x/fz)

where erf(z) f fz ~tdt, the error function.

y = Py(y) = Px(x) = % + %erf(x/\@)

x =V2erf1(2y — 1).



7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation
= f(Y) such that the density of X is p( ).

Example Cauchy distribution p(x) = (1+X2)

Example. Gaussian distribution p(x;0,1) = \/%e_(xfp

Px(x) = 127/ e /2t

- 1 + 1erf(x/fz)

where erf(z) f fz ~tdt, the error function.

y = Py(y) = Px(x) = % + %erf(x/\@)

x =V2erf1(2y — 1).

Another method: Box-Muller method.



7.2.2 Acceptance-rejection method

For a given density p(x), suppose that we know a function g(x)
satisfying
q(x) = p(x),

and that we have a way to sample from the density

d(x) = q(x)/1q].

» Pick two random variables, x’ and y, in which x’ is a trial
variable chosen according to G(x’), and y is a decision variable
chosen according to the uniform density on 0 < y < 1.

> Accept if 0 <y < p(x’)/q(x)
> Reject if p(x')/q(x') <y < 1.



7.2.2 Acceptance-rejection method

* black: density of interest, p(x), * gray: Gaussian, q(x)



7.2.2 Acceptance-rejection method

* black: density of interest, p(x), * gray: Gaussian, q(x)
Idea of Proof. (
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where I(p§ % y)=1if ngg > y and 0 otherwise. So,

/ x)dx = // —= > y)dyq(x)![q]dx



7.3 Accuracy and Improvements

In Monte Carlo integration /[fp] = [ fpdx, the error e and the
number n of samples are related by

e= (’)(anfl/z),

2
n=0((c/e)’).
where o is the variance of f (or fp).
There are two approaches to improve the accuracy
P Increase the convergence rate

» or decrease the variance, i.e., variance reduction.



7.3.1 Quasi-Monte Carlo

> A deterministic sequence, not random

» Maintains uniformity
d,—1
» Convergence rate O((Inn)?n~1).

Standard Monte Carlo
LRI PO

[ . . 1

Standard Monte Carlo (left) and Quasi-Monte Carlo (right)
samples of the same size 1000.



7.3.2 Variance Reduction

Method: Antithetic variates For a sample value x where m is a
mean of p(x), also use the value x’ = m — (x — m).
That is, if {x;} is a sample of size n,

116] = 1) ~ 5 S (1) + Fm — (x; — m)).

Motivation. If the standard deviation of p(x), say std,, is small,
f(x) = f(m) + f'(m)stdp% + O(std})

where x = stdpX.



7.3.2 Variance Reduction

Method: Control variates If there is a function g(x) such that g
is similar to f and Ip[g] = [ g(x)p9x)dx is known,

[ 6pti = [(0) — gCpxlai + [ gx)px)a

That is, the control variates is effective if the variance of (f — g) is
smaller than the variance of f(x).

One may try the following idea to reduce the variance further.
Introduce a multiplier A

[ 60pax = [ (£ = Ag()p(x)d + 1 [ g(pix)ae

Use A minimizing the variance of f — \g.



7.3.2 Variance Reduction

Method: Matching moments method Let m; and my, be the
first and the second moments of p(x). Also let a3 and «y are the
first and the second sample moments of a sample {x;}.

Then, instead of {x;}, use the following transformed sample {y;}
that preserves the correct moments up to the second order

yi=(x —ai)c+m

m2fm%

2 .

where ¢ =
ap—o

Exercise. Show that the first two sample moments of {y;} are
equal to the true moments m; and my.



7.3.2 Variance Reduction

Method: Stratification For simplicity, let us consider an interval
Q =10,1] and a problem of

/ f(x)dx.
[0,1]

For a fixed m > 0, divide [0, 1] into M equal subintervals

Q= [52, £].

Also for simplicity, assume that the sample size n is a multiple of
m. Then, for each k < m, sample n/m points {x,k} uniformly

distributed in Q.

/ f(x)dx L
[0’1] k

Then the error e is

X

S|
]
™
-
N

~1/2

ex~n Os

where 02 = YT Jo, (F(x) = fi)%dx and fy = Jo, f(x)dx



7.3.2 Variance Reduction

Method: Stratification
Claim. The variance o2 is smaller than the variance without

stratification 02 = f[o y(f = £)2dx where f = f[o 3 F(x)dx.



7.3.2 Variance Reduction

Method: Stratification
Claim. The variance o2

< is smaller than the variance without
stratification 02 = f[

oqy(f — £)2dx where f = f[OJ] f(x)dx.
Idea of proof. The minimizer ¢ of fﬂk(f(x) —¢)?dx is

fi= g, f(x)dx.



7.4 Example

We want to calculate

e 1
= ————dx =0.15
P /2 (1 + x2) x

» Estimator 1: p; = %Zf’ I(X; > 2) where {X;} is from Cauchy
» Estimator 2:

po = 2= S°T1(|Xi| > 2) where {X;} is from Cauchy
> Estimator 3: p3 =3 — 137 m where {X;} is from
Uniform[0,2].

> Estimator 4: py =
Uniform[0,1/2].

n_ X7? :
15 T where {X;} is from



Homework

1. Calculate the variances of estimator 1,2,3 and 4 in the
previous slide (show your work).



