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7.1 Monte Carlo Integration

For a function f (x) which is integrable over [0, 1]d , we want to
calculate the mean value of f

I [f ] =

∫
[0,1]d

f (x)dx = f .

Setting: We assume that we know how to evaluate f (x) but there
is not simple formula for the antiderivative of f (x).

I If we use a grid-based methods, the convergence rate is
O(n−k/d) where k is the order of the grid-based method.

I The Monte Carlo integration draws a sample {xi} from the
inform distribution on [0, 1]d and estimate the integral

I [f ] ≈ În[f ] =
1

n

∑
i

f (xi ).

I The convergence rate of the Monte Carlo integration is
O(n−1/2).



7.1 Monte Carlo Integration

I The probabilistic interpretation of I [f ] is that I [f ] is an
expected value of f (x) where x has the uniform density in
[0, 1]d

I [f ] = E [f ] =

∫
[0,1]d

f (x)dx

I From the law of large numbers,

În[f ]→ I [f ].

I Also, În[f ] is unbiased

E [În[f ]] = I [f ].



7.1 Monte Carlo Integration

I Let en[f ] be the error of the Monte Carlo estimator

en[f ] = In[f ]− I [f ].

I From the Central limit theorem, for n large, we have

en[f ] ≈ σn−1/2ν

in which ν is a standard normal random variable and the
constant σ2 is the variance of f , that is,

σ2 =

(∫
(f − I [f ])2

)1/2

.



7.1 Monte Carlo Integration

Now we are interested in

I [fp] =

∫
[0,1]d

f (x)p(x)dx

where p(x) ≥ 0,
∫

[0,1]d p(x)dx = 1.
There are two approaches for this problem

1. Draw a sample {xi} of size n from the uniform density of
[0, 1]d and

I [fp] ≈ 1

n

∑
i

f (xi )p(xi ).

2. Or draw a sample {xi} of size n from the density p(x) and

I [fp] = Ip[f ] ≈ 1

n

∑
i

f (xi ).



7.1 Monte Carlo Integration

How do you decide which method to use?

Check the variances

σ2
1 =

∫
(fp − I [fp])2dx

and

σ2
2 =

∫
(f − Ip[f ])2pdx .

Choose the method with a smaller variance.
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7.2 Sampling Methods

Now we are concerned with a sampling method to generate a
sample from a given density p(x).

I Transformation method

I Acceptance-rejection method



7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation
X = f (Y ) such that the density of X is p(x).
Example. Cauchy distribution p(x) = 1

π(1+x2)
.

Example. Gaussian distribution p(x ; 0, 1) = 1√
2π
e−(x)2/2

PX (x) =
1√
2π

∫ x

−∞
e−t

2/2dt

=
1

2
+

1

2
erf (x/

√
2)

where erf (z) = 2√
π

∫ z
0 e−t

2
dt, the error function.

y = PY (y) = PX (x) =
1

2
+

1

2
erf (x/

√
2)

x =
√

2erf −1(2y − 1).

Another method: Box-Muller method.
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7.2.2 Acceptance-rejection method

For a given density p(x), suppose that we know a function q(x)
satisfying

q(x) ≥ p(x),

and that we have a way to sample from the density

q̃(x) = q(x)/I [q].

I Pick two random variables, x ′ and y , in which x ′ is a trial
variable chosen according to q̃(x ′), and y is a decision variable
chosen according to the uniform density on 0 < y < 1.

I Accept if 0 < y < p(x ′)/q(x ′)

I Reject if p(x ′)/q(x ′) < y < 1.



7.2.2 Acceptance-rejection method

* black: density of interest, p(x), * gray: Gaussian, q(x)

Idea of Proof.

p(x) =
p(x)

q(x)
q̃(x)I [q]

=

∫ 1

0
I (
p(x)

q(x)
> y)dyq̃(x)I [q]

where I (p(x)
q(x) > y) = 1 if p(x)

q(x) > y and 0 otherwise. So,∫
f (x)p(x)dx =

∫ ∫ 1

0
f (x)I (

p(x)

q(x)
> y)dyq̃(x)I [q]dx
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7.3 Accuracy and Improvements

In Monte Carlo integration I [fp] =
∫
fpdx , the error e and the

number n of samples are related by

e = O(σn−1/2),

n = O((σ/e)2).

where σ is the variance of f (or fp).
There are two approaches to improve the accuracy

I Increase the convergence rate

I or decrease the variance, i.e., variance reduction.



7.3.1 Quasi-Monte Carlo

I A deterministic sequence, not random

I Maintains uniformity

I Convergence rate O((ln n)dn−1).

Standard Monte Carlo (left) and Quasi-Monte Carlo (right)
samples of the same size 1000.



7.3.2 Variance Reduction

Method: Antithetic variates For a sample value x where m is a
mean of p(x), also use the value x ′ = m − (x −m).
That is, if {xi} is a sample of size n,

I [fp] = Ip[f ] ≈ 1

2n

n∑
i

(f (xi ) + f (m − (xi −m)).

Motivation. If the standard deviation of p(x), say stdp, is small,

f (x) = f (m) + f ′(m)stdp x̃ +O(std2
p )

where x = stdp x̃ .



7.3.2 Variance Reduction

Method: Control variates If there is a function g(x) such that g
is similar to f and Ip[g ] =

∫
g(x)p9x)dx is known,∫

f (x)p(x)dx =

∫
(f (x)− g(x))p(x)dx +

∫
g(x)p(x)dx .

That is, the control variates is effective if the variance of (f − g) is
smaller than the variance of f (x).
One may try the following idea to reduce the variance further.
Introduce a multiplier λ∫

f (x)p(x)dx =

∫
(f (x)− λg(x))p(x)dx + λ

∫
g(x)p(x)dx .

Use λ minimizing the variance of f − λg .



7.3.2 Variance Reduction

Method: Matching moments method Let m1 and m2 be the
first and the second moments of p(x). Also let α1 and α2 are the
first and the second sample moments of a sample {xi}.
Then, instead of {xi}, use the following transformed sample {yi}
that preserves the correct moments up to the second order

yi = (xi − α1)c + m1

where c =

√
m2−m2

1

α2−α2
1

.

Exercise. Show that the first two sample moments of {yi} are
equal to the true moments m1 and m2.



7.3.2 Variance Reduction

Method: Stratification For simplicity, let us consider an interval
Ω = [0, 1] and a problem of∫

[0,1]
f (x)dx .

For a fixed m > 0, divide [0, 1] into M equal subintervals
Ωk = [k−1

M , k
m ].

Also for simplicity, assume that the sample size n is a multiple of
m. Then, for each k ≤ m, sample n/m points {xki } uniformly
distributed in Ωk .∫

[0,1]
f (x)dx ≈ 1

n

m∑
k

n/m∑
i

f (xki ).

Then the error e is
e ≈ n−1/2σs

where σ2
s =

∑m
k

∫
Ωk

(f (x)− f k)2dx and f k =
∫

Ωk
f (x)dx .



7.3.2 Variance Reduction

Method: Stratification
Claim. The variance σ2

s is smaller than the variance without
stratification σ2 =

∫
[0,1](f − f )2dx where f =

∫
[0,1] f (x)dx .

Idea of proof. The minimizer c of
∫

Ωk
(f (x)− c)2dx is

f k =
∫

Ωk
f (x)dx .
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7.4 Example

We want to calculate

p =

∫ ∞
2

1

π(1 + x2)
dx = 0.15

I Estimator 1: p̂1 = 1
n

∑n
i I (Xi > 2) where {Xi} is from Cauchy

I Estimator 2:
p̂2 = 1

2n

∑n
i I (|Xi | > 2) where {Xi} is from Cauchy

I Estimator 3: p̂3 = 1
2 −

1
n

∑n
i

1
π(1+Xi )2 where {Xi} is from

Uniform[0,2].

I Estimator 4: p̂4 = 1
n

∑n
i

X−2
i

π(1+X−2
i )

where {Xi} is from

Uniform[0,1/2].



Homework

1. Calculate the variances of estimator 1,2,3 and 4 in the
previous slide (show your work).


