Math 106 Data-driven Uncertainty Quantification Homework 01

Winter 2021
Instructor: Yoonsang Lee (Yoonsang.Lee@dartmouth.edu)

Due Jan 24, 2021 11:59 pm (EDT)

Starred problems are for math-major students. Non-math major students are welcome to try starred problems.

1. ${ }^{*}$ For $\mathrm{X} \sim$ Bernoulli distribution with p, specify a probability space $(\Omega, \mathcal{B}, \mu)$ where the sample space is continuous, say $\Omega=[0,1]$.
2. Let X_{1} and X_{2} are two independent uniform distributions on $(0,1)$.
(a) Find the density of $Y_{1}=X_{1}+X_{2}$
(b) Find the density of $Y_{2}=X_{1} / X_{2}$
(c) Find the density of $Y_{3}=X_{1}^{2}$
(d) Find the density of $Y_{4}=\max \left(X_{1}, X_{2}\right)$
3. Let X and Y be two random variables with $E[Y]=m$ and $E\left[Y^{2}\right]<\infty$.
(a) Show that the constant c that minimizes $E\left[(Y-c)^{2}\right]$ is $c=m$.
(b) Show that the random variable $f(X)$ that minimizes $E\left[(Y-f(X))^{2} \mid X\right]$ is

$$
f(X)=E[Y \mid X]
$$

(c) Show that the random variable $f(X)$ that minimizes $E\left[(Y-f(X))^{2}\right]$ is also

$$
f(X)=E[Y \mid X]
$$

4. Will you consider a coin asymmetric if after 1000 coin tosses the number of heads is equal to $550 ?$
5. For two random variables X and Y, show that

$$
H(X \mid Y) \leq H(X)
$$

6. (a) State the Jensen's inequality. (b)* (for math-majors) prove the inequality.
7. * Let X and Y be independent standard normal. Construct a new (standard normal) random variable Z using X and Y so that the correlation between X and Z is ρ. What is the correlation between Y and Z ?
8. - Write a code that generates a sample of n values from the standard normal distribution $N(0,1) . n$ is an input parameter of the code.

- Draw a histogram of the sample.
- Draw the Gaussian fit to the sample statistics. That is, draw the Gaussian density with the same mean and variance of the sample.
- Draw a histogram of $y_{i}=x_{i}^{2}$ where x_{i} is a sample from the standard normal distribution.

9. - Write a code that draws a sample of n values of the uniform distribution on $[0,1] . n$ is an input parameter of the code.

- Use a transformation of random variables to generate samples from the Cauchy density $p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$.
- Draw a histogram of the sample.
- Calculate the mean. Plot the mean as a function of n.

10. - Draw n values of the standard normal random variable, X.

- When $Y=X^{2}$, calculate $D(X, Y)$ using the sample. If you use a histogram in a sense, change the number of bins and check the change of the relative entropy.
- Compare the relative entropy with an analytic solution (it is okay to use computer to finish your analytic formula of the relative entropy).

