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Winter 2021 Math 106
Topics in Applied Mathematics
Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Lecture 1: Introduction
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’21 Winter M106
▶ Class: MWF 11:45 am - 12:50 pm
▶ Office hours: TBA
▶ Instructor: Yoonsang Lee (yoonsang.lee@dartmouth.edu)
▶ Office: 206 Kemeny
▶ Grading

▶ homework (40%)
▶ midterm (20%)
▶ final exam (30%), and
▶ participation (10%); you are not required to attend the live

lectures, but you will have several surveys to complete.
▶ Homework will include theory and computer simulation

problems
▶ More details including lecture notes are available at

http://math.dartmouth.edu/~m106w21

http://math.dartmouth.edu/~m106w21
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Uncertainty Quantification (UQ)
▶ Deterministic models of complex physical processes

incorporate some element of uncertainty to account for lack
of knowledge about important physical parameters, random
variability, or ignorance about what the form of a ’correct’
model would be..

▶ Goal of UQ: to provide accurate predictions about systems’
uncertain behavior.

▶ Roughly speaking, UQ is the interplay of probability theory
and statistical practice with ’the real world’ applications’

▶ This course will cover more than probability/statistics.
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An example of uncertainty in a deterministic system
▶ Let xn be the value of a physical system at the n-th time.
▶ We want to know the future value of xn, say xn+1.
▶ Using fancy and esoteric physics/mathematics techniques, we

found that the future value is given by

xn+1 = fractional part of 10xn

Q : How many times can we repeat for accurate prediction?
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An example of uncertainty in a deterministic system
Let’s assume that the true initial value is

x0 = 0.123456789123456789....

Due to uncertainty in getting the correct initial value, let us
assume that we start with an initial value x̃0 = 0.123.

▶ xn+1 = fractional part of 10xn
x1 = 0.234567891..., x2 = 0.345678912..., x3 = 0.456789123...
x̃1 = 0.23, x̃2 = 0.30, x̃3 = 0.00

No prediction!
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An example of uncertainty in a deterministic system
Let’s assume that the true initial value is
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assume that we start with an initial value x̃0 = 0.123.
▶ xn+1 = fractional part of 10xn
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Data-driven Uncertainty Quantification
▶ Data provides information of the uncertain information.
▶ Goal of data-driven UQ: to improve predictions using data.
▶ The information included in data is typically incomplete and

noisy.
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An example of improving prediction using data
Prediction of temperature

PDF: probability density function
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An example of improving prediction using data
Prediction of temperature

Observation data is noisy; the variance of the red PDF is the
observation error variance.
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An example of improving prediction using data
Prediction of temperature

The posterior PDF is obtained by the Bayes’ formula

p(t|v) ≈ p(t)p(v|t), t : temperature, v : observation
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Is it raining?
(Facebook data scientist interview question)

You’re about to get on a plane to Seattle. You want to know if you
should bring an umbrella. You call 3 random friends of yours who
live there and ask each independently if it’s raining. Each of your
friends has a 2/3 chance of telling you the truth and a 1/3 chance
of messing with you by lying. All 3 friends tell you that ”Yes” it is
raining. What is the probability that it’s actually raining in Seattle?

Hint if you have more responses, are you more confident?
Answer

P(rain|y, y, y) =P(y, y, y|rain)P(rain)
P(y, y, y) using Bayes’ theorem

=
P(y, y, y|rain)P(rain)

P(y, y, y|rain)P(rain) + P(y, y, y|no_rain)P(no_rain)

=
(2/3)3P(rain)

(2/3)3P(rain) + (1/3)3(1 − P(rain))
(1)
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Big picture of the course
Please keep the following questions in mind during the course
▶ How to (effectively) represent uncertainty?

What is the best strategy to represent a non-Gaussian
distribution? What about high-dimensional spaces?

▶ How to propagate uncertainty in time (for future predictions)?

Given the current PDF, how can we obtain the future time
PDF? What about high-dimensional spaces?

▶ How to incorporate data?

What if we have only a small number of data? What if
observation is not directly related to the uncertain variable?

▶ How to extract useful information?
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Big picture of the course
Please keep the following questions in mind during the course
▶ How to (effectively) represent uncertainty?

What is the best strategy to represent a non-Gaussian
distribution? What about high-dimensional spaces?

▶ How to propagate uncertainty in time (for future predictions)?
Given the current PDF, how can we obtain the future time
PDF? What about high-dimensional spaces?

▶ How to incorporate data?
What if we have only a small number of data? What if
observation is not directly related to the uncertain variable?

▶ How to extract useful information?
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Specific goals of the course
▶ This course will focus on intuition behind UQ methods rather

than technical details.
▶ Although I do not plan to teach advanced mathematics, I will

motivate you why we need them for applied and
computational mathematics.

▶ You will be familiar with/able to run computational UQ
methods for data-driven sciences/engineering.
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Plan (subject to changes)
Week 1: Introduction
▶ Day 1 - Intro and overview
▶ Day 2 - Review of probability
▶ Day 3 - Information theory

Week 2: Statistical Inference
▶ Day 1 - Parametric inference
▶ Day 2 - Bayesian inference
▶ Day 3 - Nonparametric estimation

Week 3: Random Sampling
▶ Day 1 - Monte Carlo
▶ Day 2 - Markov chain Monte Carlo
▶ Day 3 - Importance sampling
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Plan (subject to changes)
Week 4: Polynomial Chaos
▶ Day 1 - Hilbert Space
▶ Day 2 - Polynomial Chaos
▶ Day 3 - Stochastic Galerkin

Week 5: Special Tools
▶ Day 1 - Optimization (variational techniques)
▶ Day 2 - Smoothing using orthogonal functions
▶ Day 3 - Midterm

Week 6: Random Systems
▶ Day 1 - Chaotic Systems
▶ Day 2 - Stochastic differential equations
▶ Day 3 - Multiscale and long-time behavior
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Plan (subject to changes)
Week 7: Data Assimilation
▶ Day 1 - Kalman Filter
▶ Day 2 - 3D-Var
▶ Day 3 - Ensemble Kalman Filter

Week 8: Advanced Data Assimilation
▶ Day 1 - Ensemble square root filter
▶ Day 2 - Particle filter
▶ Day 3 - Localization and inflation

Week 9: Challenges of High-dimensional Spaces
▶ Day 1 - Sampling in high-dimensional spaces
▶ Day 2 - Data assimilation in high-dimensional spaces
▶ Day 3 - Review
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Sample homework/test problems
▶ Do online search for ’Kalman Filter’ and make a one-sentence

summary.
▶ For a variable u and its observation v, is the conditional

probability p(u|v) larger than the prior p(u)? In other words,
does the observation v decrease the uncertainty of u?

▶ Modify the given data assimilation code to incorporate the
deterministic sample-transformation method you learned.
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Special minor topic I: Why log? - entropy
Assume that we have a system of N particles with volume V and
energy E. Let Ω represent all possible configurations of the system.
From the elementary Physics, we all know that the entropy S(Ω) is
defined by

S = −k ln Ω,

where k is the Boltzmann constant.
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Special minor topic I: Why log? - entropy
We want to define entropy S(Ω) to represent uncertainty of the
system. Entropy must satisfy
▶ From two systems of Ω1 and Ω2, the total entropy of the

combined system, S12 (not necessarily in contact), is given by

S12 = S1 + S2

or
S(Ω12) = S(Ω1) + S(Ω2)

The relation between Ω12,Ω1 and Ω2

Ω12 = Ω1 × Ω2
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Special minor topic I: Why log? - entropy
What is the general form of functions satisfying

S(Ω1Ω2) = S(Ω1) + S(Ω2)

Answer: S(Ω) = k ln Ω for a constant k
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Special minor topic I: Why log? - entropy
What is the general form of functions satisfying

S(Ω1Ω2) = S(Ω1) + S(Ω2)

Answer: S(Ω) = k ln Ω for a constant k



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special minor topic I: Why log? - entropy
Another interpretation of entropy
The probability of the system being in one of the all possible states
(Ω)

p =
1
Ω

S = lnΩ = − ln p

An example in communication We want to send a number from
0 to 1023. The probability of receiving, for example, 263, is 1

1024 .
How much information we need to identify the number? That is,
what is the uncertainty of this communication?

− log2
1

1024 = 10bits
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Special minor topic I: Why log? - entropy
Another interpretation of entropy
The probability of the system being in one of the all possible states
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Special minor topic I: Why log? - entropy
Another interpretation of entropy
The probability of the system being in one of the all possible states
(Ω)

p =
1
Ω
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An example in communication We want to send a number from
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what is the uncertainty of this communication?

− log2
1

1024 = 10bits



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special minor topic I: Why log? - entropy
Another interpretation of entropy
The probability of the system being in one of the all possible states
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1
Ω
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Special minor topic I: Why log? - entropy
Assume that there are only M states with corresponding
probabilities p1, p2, ..., pM. The entropy of each state is

Sm = − ln pm

What is the average entropy?

H({pm}) =
M∑

m=1
pmSm =

∑
−pm ln pm
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Special minor topic I: Why log? - entropy
Assume that there are only M states with corresponding
probabilities p1, p2, ..., pM. The entropy of each state is

Sm = − ln pm

What is the average entropy?

H({pm}) =
M∑

m=1
pmSm =

∑
−pm ln pm
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Question 1 We have a system that can take M different states.
What is the probability maximizing the entropy?

Answer Find the max of H(p)? No. We need to consider the
constraint ∑

m
p(xm) =

∑
m

pm = 1

Find the max of
H̃(p) := H(p) + λ(

∑
pm − 1) = −

∑
pm ln pm + λ(

∑
pm − 1)

∂H̃/∂pm = − ln pm − 1 + λ = 0

pm ≈ exp(−1 + λ) constant
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Question 1 We have a system that can take M different states.
What is the probability maximizing the entropy?

Answer Find the max of H(p)? No. We need to consider the
constraint ∑
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∑
m

pm = 1

Find the max of
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Question 2 For the same system, we know from an experiment
that the total energy is constant, E =

∑
Empm. What is the

probability maximizing the entropy?

Answer

H̃(p) = −
∑

pm ln pm + λ1(
∑

pm − 1) + λ2(
∑

Empm − E)

∂H̃/∂pm = − ln pm − 1 + λ1 + λ2Em = 0

pm ≈ exp(λ2Em)

The Boltzmann distribution for physicists (or the Gibbs
distribution for mathematicians)!
Homework Search for the Boltzmann (or Gibbs) distribution and
make a one-sentence summary.
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Question 2 For the same system, we know from an experiment
that the total energy is constant, E =

∑
Empm. What is the

probability maximizing the entropy?
Answer
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Homework Search for the Boltzmann (or Gibbs) distribution and
make a one-sentence summary.
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∂H̃/∂pm = − ln pm − 1 + λ1 + λ2Em = 0

pm ≈ exp(λ2Em)

The Boltzmann distribution for physicists (or the Gibbs
distribution for mathematicians)!
Homework Search for the Boltzmann (or Gibbs) distribution and
make a one-sentence summary.
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Special minor topic II: functional derivative
Find the derivative of

∫ 1
0 (

df
dx)

2dx with respect to f

∫ 1

0
2 df

dxdx = 2f(1)− 2f(0)

Incorrect!

∫ 1
0
(
( df

dx + dδ
dx)

2 − ( df
dx)

2) dx
=

∫ 1
0
(
( df

dx)
2 + 2 df

dx
dδ
dx + (dδ

dx)
2) dx

=
∫ 1

0 2 df
dx

dδ
dxdx

= −
∫ 1

0 2 d2f
dx2 δdx

δ is arbitrary; thus if we are looking for an equilibrium point
(gradient is zero), we must have

−2 d2f
dx2 = 0
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Special minor topic II: functional derivative
Schrodinger equation
One-dimensional Schrodinger equation with a potential V:

−ψxx + Vψ = 0

ψ : wave function, |ψ|2 : probability distribution function
Find ψ minimizing

∫ 1
2 |ψx|2 + V(x)|ψ|2dx

⇒ −ψxx + Vψ = 0

Do you know other examples (equations), which contain second
derivatives?
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Special minor topic II: functional derivative
Schrodinger equation
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Now it is time to use the special topics I and II
Question: What is the probability distribution function p
maximizing the entropy with a fixed mean 0 = x =

∫
xp(x)dx and

variance σ2 =
∫
(x − x)2p(x)dx?

H̃ = −
∫

p ln pdx + λ1(
∫

pdx − 1) + λ2
∫

xpdx
+λ3(

∫
x2pdx − σ2) (2)

∂H̃/∂p = −
∫
(ln p + 1)dx + λ1

∫
1dx + λ2

∫
xdx + λ3

∫
x2dx

p(x) ≈ exp(x2/2σ2) Gaussian distribution!!!
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Programming
▶ Computational methods are essential for UQ as analytic tools

are limited. Thus this course will focus on implementation
and validation of UQ methods for applications. You are
welcome to use any programming langue of your preference
including MATLAB.

▶ If you are interested in experiences other than the school
setting (for example, internship at industrial companies or
national labs), it is highly recommended to use Python/C++
for your programming.
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Programming
▶ Computational methods are essential for UQ as analytic tools

are limited. Thus this course will focus on implementation
and validation of UQ methods for applications. You are
welcome to use any programming langue of your preference
including MATLAB.

▶ If you are interested in experiences other than the school
setting (for example, internship at industrial companies or
national labs), it is highly recommended to use Python/C++
for your programming.

Homework Open an account on Discovery, the Dartmouth HPC
cluster, and learn how to run MATLAB/python code on it.


