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Winter 2021 Math 106
Topics in Applied Mathematics
Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Lecture 2: Review of Probability
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Review of Lecture 1
▶ Course Webpage: http://math.dartmouth.edu/~m106w21
▶ Bayes’ theorem

p(u|v) ≈ p(u)p(v|u)
▶ (Average) entropy

H({p}) = −
M∑
m

pm ln pm

The maximum entropy distribution (or equilibrium
distribution) of fixed mean and variance is given by the
Gaussian distribution.

http://math.dartmouth.edu/~m106w21
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Probability
Probability plays an important role in UQ. We will review some
basic facts of probability in this lecture.
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2.1 Probability space (Ω,B, µ)
The triple (Ω,B, µ) is called a probability space
where
Def. A sample space Ω is the space of all possible outcomes.
Def. B is a σ-algebra if it satisfies the following properties

1. ∅ ∈ B and Ω ∈ B
2. If B ∈ B, then its complement Bc = Ω\B ∈ B.
3. For {Ai, i ∈ N}, then

∪
i

Ai ∈ B

Def. A probability measure µ(A) for A ∈ B is a function
µ : B → R such that

1. µ(Ω) = 1
2. 0 ≤ µ ≤ 1.
3. If {A1,A2, ...,An, ...} is a finite or countable collection of

events such that Ai ∈ B and Ai ∩ Aj = ∅ for i ̸= j,
µ(
∪∞

i Ai) =
∑∞

i µ(Ai)
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2.1 Probability space (Ω,B, µ)
Def. An element ω of Ω is an outcome.
Def. An element element of B is called an event.
Def. A random variable X : Ω → R is a B-measurable function
defined on Ω, where B-measurable means that the subset of
elements ω ∈ Ω for which X(ω) ≤ x is an element of B for every
x ∈ R.
Def. Given a probability measure µ(A), the probability distribution
function of a random variable X, PXA, is defined by

PX(x) = µ(X ≤ x)

Def. If PX is differentiable, its derivative, p(x) = P′
X(x) is called

the probability density of X.
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2.1.1 Examples of probability densities
▶ Bernoulli density. Let X represent a binary coin flip with

µ(X = 1) = p and µ(X = 0) = 1 − p for some p ∈ [0, 1]. The
probability density is

p(x) = px(1 − p)1−x for x ∈ {0, 1}.

▶ Binomial density. Flip the above coin n times and let X be the
number of heads. Assume that the tosses are independent.
For x = 1, 2, ..., n,

p(x) =
(

n
x

)
px(1 − p)n−x



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2.1.1 Examples of probability densities
▶ Bernoulli density. Let X represent a binary coin flip with

µ(X = 1) = p and µ(X = 0) = 1 − p for some p ∈ [0, 1]. The
probability density is

p(x) = px(1 − p)1−x for x ∈ {0, 1}.

▶ Binomial density. Flip the above coin n times and let X be the
number of heads. Assume that the tosses are independent.
For x = 1, 2, ..., n,

p(x) =
(

n
x

)
px(1 − p)n−x

Exercise What is the sample space of the Bernoulli distribution?
What is is corresponding probability measure?
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2.1.1 Examples of probability densities
▶ Gaussian (or normal) density with mean m and variance σ2,

N(m, σ2)

p(x) = 1√
2πσ2

e−
(x−m)2

2σ2

’
▶ Uniform density on the interval (a, b)

p(x) =
{ 1

b−a , x ∈ (a, b),
0, x ̸∈ (a, b)

▶ Cauchy density
p(x) = 1

π(1 + x2)
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2.1.2 Transformations of random variables
Let X and Y be two random variables and r is a relation between
them, that is, Y = r(X). If p(x) is the density of X, what is the
density of Y, say f(y) in terms of p and y?



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2.1.2 Transformations of random variables
Let X and Y be two random variables and r is a relation between
them, that is, Y = r(X). If p(x) is the density of X, what is the
density of Y, say f(y) in terms of p and y?
Answer
When r is monotone and differentiable,

p(x)dx = p(r−1(y))|dr−1

dy |dy

Thus, f(y) = p(r−1(y)|dr−1

dy |
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2.1.2 Transformations of random variables
Let X and Y be two random variables and r is a relation between
them, that is, Y = r(X). If p(x) is the density of X, what is the
density of Y, say f(y) in terms of p and y?
Example
Let p(x) = e−x for x > 0 and Y = r(x) = logX. From the change
of variables,

f(y) = p(ey)
dey

dy = e−eyey
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2.1.2 Transformations of random variables
Let X and Y be two random variables and r is a relation between
them, that is, Y = r(X). If p(x) is the density of X, what is the
density of Y, say f(y) in terms of p and y?
Answer
In general case, use the following steps

1. For each y, find the set Ay = {x|r(x) ≤ y}.
2. PY(y) = µ(Y ≤ y) = µ(r(X) ≤ y) = µ({x|r(x) ≤ y}) =∫

Ay
p(x)dx

3. f(y) = P′
y(y).
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2.1.2 Transformations of random variables
Let X and Y be two random variables and r is a relation between
them, that is, Y = r(X). If p(x) is the density of X, what is the
density of Y, say f(y) in terms of p and y?
Example
Let p(x) = e−x for x > 0 and Y = r(x) = logX. Then,
PX(x) =

∫ x
0 p(t)dt = 1 − e−x and Ay = {x|x ≤ ey}.

PY(y) = µ(Y ≤ y) = µ(logX ≤ y) = µ(X ≤ ey) = PX(ey) = 1−e−ey
.

Therefore, f(y) = eye−ey .
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2.1.2 Transformations of random variables
Exercise X is uniform on [0, 2π]. Find the density of Y = sinX.
Exercise Let X1 and X2 are two independent uniform distributions
on (0, 1).

1. Find the density of Y1 = X1 + X2.
2. Find the density of Y2 = X1 − X2.
3. Find the density of Y3 = X1/X2.
4. Find the density of Y4 = max(X1,X2).
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2.2 Expected Values and Moments
Def. Let (Ω,B, µ) be a probability space and X a random variable.
Then the expected value (or mean) of the random variable X is
defined as the integral of X over Ω with respect to the measure µ

E[X] =
∫
Ω

X(ω)dµ =

∫
xp(x)dx.

Def. The variance Var(X) of the random variable X is

Var(X) = E[(X − E[X])2] =

∫
(x − E[X])2p(x)dx

and the standard deviation of X is

σ(X) =
√

Var(X).
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2.2 Expected Values and Moments
Def. The m-th moment of a random variable X is defined by

E[Xm] =

∫ ∞

−∞
xmp(x)dx
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2.2 Expected Values and Moments
Def. The m-th moment of a random variable X is defined by

E[Xm] =

∫ ∞

−∞
xmp(x)dx

Thm. If the m-th moment exists and j < m then the j-th moment
exists.
Proof.

E[Xj] =
∫∞
−∞ xjp(x)dx =

∫
|x|≤1 xjp(x)dx +

∫
|x|>1 xjp(x)dx

≤
∫
|x|≤1 +

∫
|x|>1 xjp(x)dx

≤ 1 + E[Xm] < ∞.
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2.2 Expected Values and Moments
Exercise
▶ Find the mean and variance of a Gaussian random variable X

with a density p(x) = 1√
2πσ2 exp(−(x − m)2/2σ2).

▶ Find the mean of the Cauchy distribution p(x) = 1
π(1+x2) .

▶ Find the mean and variance of the Binomial distribution
b(x; n, p) =

(n
x
)
px(1 − p)n−x.
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2.2 Expected Values and Moments
Exercise Let X be a random variable such that E[|X|m] ≤ ACm for
some positive constancts A and C, and all intergers m ≥ 0. Show
that µ(|X| > C) = 0.
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2.3 Joint Probability and Independence
Def. Two events A and B, A,B ∈ B, are independent if
µ(A ∩ B) = µ(A)µ(B).
Def. Two random variables X and Y are independent if the events
{X ≤ x} and {Y ≤ y} are independent for all x and y.
Def. The joint distribution of two random variables X and Y is
defined by

PXY(x, y) = µ(X ≤ x,Y ≤ y)

Def. If the second mixed derivative ∂2PXY(x, y)/∂x∂y exists, it is
called the joint probability density

PXY(x, y) =
∫ x

−∞

∫ y

−∞
p(s, t)dtds
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2.3 Joint Probability and Independence
Def. The covariance of two random variables X and Y is

Cov(X,Y) = E[(X − E[X])(Y − E[Y])].

Def. Correlation between X and Y is defined as

Cor(X,Y) = Cov(X,Y)
σ(X)σ(Y)

Def. Two random variables X and Y are uncorrelated if
Cor(X,Y) = 0.
Note. X and Y are independent ⇒ X and Y are uncorrelated. The
opposite direction does not hold.
Def. The marginal densities of X and Y are

p(x) =
∫

p(x, y)dy, p(y) =
∫

p(x, y)dx
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2.3 Joint Probability and Independence
Exercise (programming) Generate a sample of two random
variables X and Y where X and Y are normal with a correlation ρ.
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2.4 Conditional Probability and Conditional Expectation
Def. The probability of an event B given an event A is defined by

µ(A|B) = µ(A ∩ B)
µ(B) .

Def. If two random variables X and Y have densities pX and pY
respectively, the conditional probability density of X given Y is
defined by

pY|X(y|x) =
pX,Y(x, y)

pX(x)
Def. The conditional expectation of X given Y is defined by

E[Y|X] =
∫

ypY|X(y|x)dx
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2.4 Conditional Probability and Conditional Expectation
Exercise Let X and Y be two random variables with E[Y] = m and
E[Y2] < ∞.

1. Show that the constant c that minimizes E[(Y− c)2] is c = m.
2. Show that the random variable f(X) that minimizes

E[(Y − f(X))2|X] is
f(X) = E[Y|X].

3. Show that the random variable f(X) that minimizes
E[(Y − f(X))2] is also

f(X) = E[Y|X].
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2.4 Conditional Probability and Conditional Expectation
Bayes’ theorem

µ(B|A) = µ(B)µ(A|B)
µ(A)

Proof
µ(B|A)µ(A) = µ(B)µ(A|B) = µ(A ∩ B)
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2.4 Conditional Probability and Conditional Expectation
Review of the facebook interview question from Lecture 1
You’re about to get on a plane to Seattle. You want to know if you
should bring an umbrella. You call 3 random friends of yours who
live there and ask each independently if it’s raining. Each of your
friends has a 2/3 chance of telling you the truth and a 1/3 chance
of messing with you by lying. All 3 friends tell you that ”Yes” it is
raining. What is the probability that it’s actually raining in Seattle?

P(rain|y, y, y) = P(y, y, y|rain)P(rain)
P(y, y, y)

=
(2/3)3P(rain)

P(y, y, y)
Can you calculate the denominator? Can you represent it in terms
of P(rain)?
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2.4 Conditional Probability and Conditional Expectation
Exercise Is the conditional probability larger than the prior
probability? That is, can you show that

µ(B|A) ≥ µ(B)?

This statement implies that collecting data, A, increases the
probability of B.

Answer: It is not always true. As a counterexample, consider the
case µ(A) = µ(B) = 1/2 and µ(A ∩ B) = 1/8. Then
µ(B|A) = 1/4 < 1/2 = µ(B).
This example shows that collecting data does not alway improve
your probability.
But wait until the next lecture. There is more to discuss before
giving up collecting data.
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2.4 Conditional Probability and Conditional Expectation
Exercise Is the conditional probability larger than the prior
probability? That is, can you show that

µ(B|A) ≥ µ(B)?

This statement implies that collecting data, A, increases the
probability of B.
Answer: It is not always true. As a counterexample, consider the
case µ(A) = µ(B) = 1/2 and µ(A ∩ B) = 1/8. Then
µ(B|A) = 1/4 < 1/2 = µ(B).

This example shows that collecting data does not alway improve
your probability.
But wait until the next lecture. There is more to discuss before
giving up collecting data.
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2.4 Conditional Probability and Conditional Expectation
Exercise Is the conditional probability larger than the prior
probability? That is, can you show that

µ(B|A) ≥ µ(B)?

This statement implies that collecting data, A, increases the
probability of B.
Answer: It is not always true. As a counterexample, consider the
case µ(A) = µ(B) = 1/2 and µ(A ∩ B) = 1/8. Then
µ(B|A) = 1/4 < 1/2 = µ(B).
This example shows that collecting data does not alway improve
your probability.

But wait until the next lecture. There is more to discuss before
giving up collecting data.
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2.4 Conditional Probability and Conditional Expectation
Exercise Is the conditional probability larger than the prior
probability? That is, can you show that

µ(B|A) ≥ µ(B)?

This statement implies that collecting data, A, increases the
probability of B.
Answer: It is not always true. As a counterexample, consider the
case µ(A) = µ(B) = 1/2 and µ(A ∩ B) = 1/8. Then
µ(B|A) = 1/4 < 1/2 = µ(B).
This example shows that collecting data does not alway improve
your probability.
But wait until the next lecture. There is more to discuss before
giving up collecting data.
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2.5 Inequalities
Markov’s inequality Let X be a non-negative random variable and
suppose E[X] exists. For any t > 0,

µ(X > t) ≤ E[X]
t .
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2.5 Inequalities
Markov’s inequality Let X be a non-negative random variable and
suppose E[X] exists. For any t > 0,

µ(X > t) ≤ E[X]
t .

Proof.

E[X] =
∫ ∞

0
xp(x)dx =

∫ t

0
xp(x)dx +

∫ ∞

t
xp(x)dx

≥
∫ ∞

t
xp(x)dx ≥ t

∫ ∞

t
p(x)dx = tµ(X > t).
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2.5 Inequalities
Chebyshev’s inequality Let m = E[X] and σ2 = Var(X). Then,

µ(|X − m| ≥ t) ≤ σ2

t2 and µ(|Z| ≥ k) ≤ 1
k2

where Z = (X − m)/σ.
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2.5 Inequalities
Chebyshev’s inequality Let m = E[X] and σ2 = Var(X). Then,

µ(|X − m| ≥ t) ≤ σ2

t2 and µ(|Z| ≥ k) ≤ 1
k2

where Z = (X − m)/σ.
Proof. Use the Markov’s inequality for Y = |X − m|2.
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2.5 Inequalities
Exercise Will you consider a coin asymmetric if after 1000 coin
tosses the number of heads is equal to 600?
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2.6 Types of convergence
Let we have a sequence of random variables,X1,X2, ...,Xn and let
X is another random variable. Then
▶ Xn converges to Xn in quadratic mean (or in L2) if

E[(Xn − X)2] → 0.

▶ Xn converges to X in probability if for every ϵ > 0

P(|Xn − X| > ϵ) → 0

▶ Xn converges to X in distribution if for all t

lim
n→∞

Fn(t) = F(t)

where Fn(t) and F(t) are the distribution functions of Xn and
X respectively.
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2.6 Types of convergence
Convergence in quadratic mean ⇒ Convergence in probability ⇒
Convergence in distribution
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2.7 Limit Theorems
Let X1,X2, ...,Xn are independent, identically distributed random
variables with variance σ2 and mean m.
Q1 What is the mean of X1 + X2 + · · ·+ Xn?
Q2 What is the variance of X1 + X2 + · · ·+ Xn?

The Law of Large Numbers For

Xn =
1
n

n∑
i

Xi,

converges in probability to the expectation E[Xi] = m.
The Central Limit Theorem
Define

Sn =
1√
n

n∑
i

Xi.

Then Sn converges in distribution to a Gaussian variable with mean
m and variance σ2.
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2.7 Limit Theorems
Monte Carlo Integration∫

[0,1]d
f(x)dx ≈ 1

n

n∑
i

f(xi)

where {xi} is a sample of [0, 1]d.
The Central Limit Theorem implies that the Monte Carlo
approximation error is of order 1√n .
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Homework
▶ Write a code that generates a sample of n values from the

standard normal distribution N(0, 1). n is an input parameter
of the code.

▶ Draw a histogram of the sample.
▶ Draw the Gaussian fit to the sample statistics. That is, draw

the Gaussian density with the same mean and variance of the
sample.

▶ Draw a histogram of yi = ex
i where xi is a sample from the

standard normal distribution.
▶ Write a code that draws a sample of n values of the uniform

distribution on [0, 1]. n is an input parameter of the code.
▶ Use a transformation of random variables to generate samples

from the Cauchy density p(x) = 1
π(1+x2) .

▶ Draw a histogram of the sample.
▶ Calculate the mean. Plot the mean as a function of n.


