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Lecture 4: Parametric Inference
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4.1 Statistical Inference
Statistical inference or learning is the process of using data to
infer the distribution that generated the data.

Therefore, we can estimate statical functionals of the unknown
distribution

Note that any map of a distribution is called a statistical functional
of the distribution

F = F(P).
For example, for a distribution P(x) and its corresponding density
p(x)
▶ E[X] =

∫
xp(x)dx

▶ median = P−1(1/2)
For a sample of two random variables X and Y with a joint density
p(x, y)
▶ E[Y|X = x] =

∫
yp(x, y)/p(x)dy
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4.1 Statistical Inference
Example. Let X1,X2, ...,Xn is a sample from a density p(x). Infer
p(x) using the sample.

1. If we assume that p(x) is a Gaussian, we need to estimate only
the mean and variance using the sample mean and variance

m̂ =
1
n
∑

i
Xi

and
σ̂2 =

1
n − 1

∑
i
(Xi − m̂)2

2. Without assuming any form for p(x), we estimate p(x) using a
normalized histogram

Example 1 is an example of parametric inference (where the
unknown parameters are the mean and the variance). Example is
an example of nonparametric inference.
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4.1 Statistical Inference
Example. Let X1,X2, ...,Xn is a sample from a density p(x). Infer
p(x) using the sample.

1. If we assume that p(x) is a Gaussian, we need to estimate only
the mean and variance using the sample mean and variance

m̂ =
1
n
∑

i
Xi

and
σ̂2 =

1
n − 1

∑
i
(Xi − m̂)2

2. Without assuming any form for p(x), we estimate p(x) using a
normalized histogram

Example 1 is an example of parametric inference (where the
unknown parameters are the mean and the variance). Example is
an example of nonparametric inference.
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4.1 Statistical Inference
Broadly speaking, inferential problems fall into one of the three
types

1. Point estimation
2. Confidence set (interval for 1D)
3. Hypothesis testing
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4.1.1 Point Estimation
Let F be a statistical functional of an unknown distribution P and
{Xi} be an independent and identically distributed sample of P.

Point estimation provides a single best guess of F, often denoted by

F̂ = g(X1,X2, ...,Xn),

which is a function of the sample.
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4.1.1 Point Estimation
Let F be a statistical functional of an unknown distribution P and
{Xi} be an independent and identically distributed sample of P.

Point estimation provides a single best guess of F, often denoted by

F̂ = g(X1,X2, ...,Xn),

which is a function of the sample.
This means that F̂ changes for a different sample. To be more
precise, F̂ is a random variable.
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4.1.1 Point Estimation
Let F be a statistical functional of an unknown distribution P and
{Xi} be an independent and identically distributed sample of P.

Point estimation provides a single best guess of F, often denoted by

F̂ = g(X1,X2, ...,Xn),

which is a function of the sample.
The distribution of F̂ is called the sampling distribution and its
standard deviation is called the standard error, denoted by se.

se =

√
Var(F̂)
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4.1.1 Point Estimation
Let F be a statistical functional of an unknown distribution P and
{Xi} be an independent and identically distributed sample of P.

Point estimation provides a single best guess of F, often denoted by

F̂ = g(X1,X2, ...,Xn),

which is a function of the sample.
▶ If the expected value of the point estimator is equal to the

true value Ftrue, then the estimator is called unbiased.
▶ If the estimator converges in probability to the true value as

the sample size,n, increases, the estimator is called
consistent.

▶ The estimator is asymptotically Normal if the estimator
converges in distribution to a normal as the sample size
increases.
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4.1.1 Point Estimation
The mean squared error (MSE) defined as

E[(θ̂ − θ)2]

can be written as

MSE = bias(θ̂)2 + Var(θ̂).
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4.1.1 Point Estimation
Example. Let X1,X2, ...,Xn is a sample of a Bernoulli(p). The
estimator of p is given by

p̂ =
1
n
∑

Xi.

▶ p̂ is unbiased.
▶ From the law of large numbers, it is also consistent.
▶ From the central limit theorem, it is asymptotically normal.
▶ The standard error se=

√
Var(p̂) =

√
p(1−p)

n .
▶ The estimated se uses the estimated p̂ for the standard error

ŝe =

√
p̂(1 − p̂)

n .
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4.1.2 Confidence Sets
Let {Xi} be an independent, identically distributed sample.
A 1 − α confidence set is a set C, which is a function of the
sample, such that

µ(F ∈ C) = 1 − α.

That is, the probability that C traps the true value F is 1 − α.
Example. Let F is a scalar value. If an estimator F̂ is
asymptotically normal and the sample size n is large, the 1 − α
confidence interval Cn is given by

(F̂ − zα/2ŝe, F̂ + zα/2ŝe)

where z = Φ−1(1 − (α/2)) for the standard normal distribution Φ.
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4.1.2 Confidence Sets
Let {Xi} be an independent, identically distributed sample.
A 1 − α confidence set is a set C, which is a function of the
sample, such that

µ(F ∈ C) = 1 − α.

That is, the probability that C traps the true value F is 1 − α.
A frequently asked question for a data scientist position. The
interpretation, ”the probability of the true value F is in the set C is
1 − α” is an incorrect statement.
When we construct a confidence set C using a sample {Xi}, C is a
random variable while the true value F is fixed. Thus, the
definition of the confidence set

µ(F ∈ C) = 1 − α.

is about a probability of the random variable C, not F.
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4.1.3 Hypothesis Testing
Hypothesis testing starts with a null hypothesis and check if the
sample provide sufficient evidence to reject the theory. Check one
of your favorite statistics books for details.
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4.2 Parameteric Inference
Let {Xi} be an IID sample of a distribution P. In the parametric
inference, we assume that the form of the unknown distribution is
parameterized by a set of parameters θ = (θ1, ..., θm)

P(x) = P(x; θ).

If we have an estimate of the parameter, say θ̂, the estimator
provides an estimate of the distribution P(x; θ̂).
Example.
▶ If we assume that the sample is from a Gaussian distribution

with a mean m and a variance σ2, the parameter is a pair
(m, σ2).

▶ If we assume that the sample is from a Bernoulli(p), the
parameter is the mean p.
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4.2 Parameteric Inference
We will consider two methods for parametric inference
▶ Method of Moments
▶ Max Likelihood Estimator (MLE)
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4.2.1 Method of Moments
For a sample X1,X2, ...,Xn, the j-th moment is

αj(θ) = E[Xj] =

∫
xjp(x; θ)dx, i.e., a function of θ,

where p(x; θ) is the parametrized density of the parametrized
distribution P(x; θ). The j-th sample moment, α̂j, is

α̂j =
1
n
∑

i
Xj

i

If the size of the parameter θ is m, the method of moments
estimator θ̂ is defined to be the value θ such that

αj(θ̂) = α̂j, j = 1, 2, ..., k.
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4.2.1 Method of Moments
Example. Let X1,X2, ...,Xn be an IID sample of Bernoulli(p).
▶ The size of parameter θ = p is 1.
▶ The first moment α1(θ) = α1(p) = p and the first sample

moment α̂1 is
α̂1 =

1
n
∑

Xi.

▶ By setting α1(θ) = α̂1, we have

θ̂ = p̂ =
1
n
∑

Xi.
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4.2.1 Method of Moments
Example. Let X1,X2, ...,Xn be an IID sample of Normal(m, σ2).
▶ The size of parameter θ = (m, σ2) is 2.
▶ The first and the second moments are

α1(m, σ2) = µ, α2(m, σ2) = m2 + σ2

▶ The sample first and the sample second moments are

α̂1 =
1
n
∑

Xi, α̂2 =
1
n
∑

X2
i

▶ Solving the system of equations gives

m̂u =
1
n
∑

Xi, σ̂2 =
1
n
∑

(Xi − û)2.

Note that σ2 is biased (but consistent).
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4.2.2 Maximum Likelihood Estimator
Let X1,X2, ...,Xn be IID with a density p(x; θ). The joint
distribution of the sample p(x1, x2, ..., xn; θ) is

p(x1, x2, ..., xn; θ) = Πn
i p(xi; θ) = p(x1; θ)p(x2; θ) · · · p(xn; θ)

This joint density as a function of θ is called the likelihood
function

Ln(θ) = Πn
i p(xi; θ).

The likelihood is the probability (density) of the sample under the
assumption of the parametric model. Note that n is the sample
size.
Warning. The likelihood function is not a density of θ.
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4.2.2 Maximum Likelihood Estimator
Definition. The maximum likelihood estimator (MLE) θ̂ is the
value θ that maximizes the likelihood function Ln(θ).
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4.2.2 Maximum Likelihood Estimator
Definition. The maximum likelihood estimator (MLE) θ̂ is the
value θ that maximizes the likelihood function Ln(θ).
Example. Let X1,X2, ...,Xn is IID Bernoulli(p). The likelihood
function is

Ln(p) = Πn
i pXi(1 − p)1−Xi = pS(1 − P)n−S

where S =
∑

Xi.
Hence,

lnL(p) = S ln p + (n − S) ln(1 − p).

Take the derivative and set it equal to zero gives

p̂ =
S
n .
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4.2.2 Maximum Likelihood Estimator
Definition. The maximum likelihood estimator (MLE) θ̂ is the
value θ that maximizes the likelihood function Ln(θ).
Example. Let X1,X2, ...,Xn is IID Normal(m, σ2). The likelihood
function after scaling is

L(m, σ) = Π
1
σ
exp

(
− 1

2σ2 (Xi − m)2
)

= σ−n exp

(
− 1

2σ2

∑
i
(Xi − m)2

)

= σ−n exp

(
−nS2

2σ2

)
exp

(
−n(X − m)2

2σ2

)
where X = 1

n
∑

Xi and S2 = 1
n
∑

(Xi − m)2. The log-likelihood is

l(m, σ) = −n lnσ − nS2

2σ2 − n(X − m)2

2σ2 .

Solving the gradient of l(m, σ) equal to zero gives

m̂ = X and σ̂ = S.
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4.2.2 Maximum Likelihood Estimator
Exercise. Let X1,X2, ...,Xn is IID Uniform(0, θ). Find the MLE of
θ.
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4.2.3 Properties of MLE
Under certain conditions on the model, the MLE has the following
properties

1. It is consistent. That is, θ̂n → θtrue in probability.
2. It is equivalent. If θ̂n is the MLE of θ, then g(θ̂) is the MLE

of g(θ).
3. It is asymptotically normal. θ̂n − θtrue converges in

distribution to N(0, se2).
4. It is asymptotically optimal. That is, roughly speaking,

among all well-behaved estimators, the MLE has the smallest
variance, at least for large samples.

5. It is approximately the Bayes estimator.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

4.2.3 Properties of MLE
Idea of the proof for the consistency.
▶ Maximizing Ln(θ) is equivalent to maximizing

Mn(θ) =
1
n
∑

ln
p(Xi; θ)

p(Xi; θtrue)
.

▶ From the law of large numbers, Mn converges to the expected
value

E
(
ln

p(X; θ)
p(X; θtrue)

)
=

∫
ln

p(x; θ)
p(x; θtrue)

p(x; θtrue)dx

= −D(p(x; θtrue), p(x; θ)) ≤ 0

with equality when θ = θtrue.
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4.2.3 Properties of MLE
Idea of the proof for the asymptotically normal property.
For ln(θ) = lnLn(θ)

0 = l′n(θ̂) ≈ l′n(θ) + (θ̂ − θ)l′′n(θ)

which yields
θ̂ − θ = − l′n(θ)

l′′n(θ)
From the central limit theorem, l′n(θ)/

√
n converges in distribution

to N(0, I(θ)) where I(θ) is the variance of ∂
∂x ln p(x; θ).

Also, from the law of large numbers, l′′n(θ)/n converges in
probability to the mean of ∂2

∂x2 ln p(x; θ), which is I(θ).
Exercise. Show that the mean of ∂

∂x ln p(x; θ) is 0.
Exercise. Show that the mean of ∂2

∂x2 ln p(x; θ) is the variance of
∂
∂x ln p(x; θ), that is I(θ).
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4.2.3 Properties of MLE
▶ The score function is the first derivative of the parametrized

density
s(X; θ) = ∂

∂θ
ln p(x; θ).

▶ The variance of the sum of the score functions is called Fisher
information

In(θ) = Var(
n∑
i

s(Xi; θ)).

That is, the Fisher information is nI(θ) where I(θ) is the
variance of the score function.
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4.2.4 The Expectation-Maximization (EM) Algorithm
Goal: Find θ that maximizes Ln(θ), i.e., the MLE estimator.
Algorithm:

1. Pick an initial value θ0. For j = 1, 2, ...,, repeat steps 1 and 2
2. (The E-step): Calculate

J(θ|θj) = E
(
ln

Πp(xi, yi; θ)

Πp(xi, yi; θj)
|x
)

This expectation is over the missing variable {yi} treating θj

and {xi} are fixed.
3. Find θj+1 maximizing J(θ|θj).
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4.2.4 The Expectation-Maximization (EM) Algorithm
Idea of the proof. We want to show that the procedure increases
the likelihood, that is, L(θj+1) ≥ L(θj).
From

J(θj+1|θj) = E
(
ln

Πp(xi, yi; θj+1)

Πp(xi, yi; θj)
|{xi}

)
= ln

L(θj+1)

L(θj)
+ E

(
ln

Πp(yi|xi; θj+1)

Πp(yi|xi; θj)
|{xi}

)
we have

ln
L(θj+1)

L(θj)
= J(θj+1|θj)− E

(
ln

Πp(yi|xi; θj+1)

Πp(yi|{xi}; θj)
|{xi}

)
= J(θj+1|θj) + D(fj, fj+1) ≥ 0

where fj = Πp(yi|xi; θj).
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4.2.4 The Expectation-Maximization (EM) Algorithm
Example. Let X1,X2, ...,Xn be a sample from a parametrized
density

p(x) = 1
2ϕ(x;µ1, 1) +

1
2ϕ(x;µ0, 1)

where ϕ(x;µi, 1) is a Gaussian density with a mean µi and a
variance 1. Find the MLE.


