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Lecture 5: Nonparametric Inference



5.1 Empirical Distribution Function

Let Xy, X2, ..., X, be an independent, identically distributed (11D)
sample from a distribution P(x).

Goal of nonparametric inference: Infer P(x) without assuming any
special structure or parametrization for P(x).

The empirical distribution P,, an estimator of P using the sample
{Xi} of size n, is the CDF that puts mass 1/n at each data point

Py = T

where
1 if X,' S X,

’(X"SX):{ 0 if X; > x.
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Let Xy, X2, ..., X, be an independent, identically distributed (11D)
sample from a distribution P(x).

Goal of nonparametric inference: Infer P(x) without assuming any
special structure or parametrization for P(x).

The empirical distribution P,, an estimator of P using the sample
{Xi} of size n, is the CDF that puts mass 1/n at each data point

S X < %)

Pa(x) = .

where
1 if X,' S X,
’(X"SX)_{ 0 if X; > x.

Eerrcise. Show that A
E(Py(x)) = P(x) and Var(Py(x)) = PRI,

n



5.1 Empirical Distribution Function

Theorem. (Glivenko-Cantelli) For each x and € > 0,

A

1(|P(x) — P(x)| > €) — 0 as n — oo.



5.2 Curve Estimation (Smoothing)

Goal of curve estimation: Approximate the unknown density from
a sample.

An example of curve estimation: Histograms.

Let g(x) be the unknown true density and {X;} be IID of size n
from g(x). The estimator of g using {X;} is denoted by

8(x {Xi})

For simplicity, we often use g,(x) for g(x; {Xi}).
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Goal of curve estimation: Approximate the unknown density from
a sample.

An example of curve estimation: Histograms.

Let g(x) be the unknown true density and {X;} be IID of size n
from g(x). The estimator of g using {X;} is denoted by

8(x {Xi})

For simplicity, we often use g,(x) for g(x; {Xi}).
Integrated squared error

(e ) = | (efe) ~ 2n(w)’
Risk (or mean integrated squared error)

R(g, gn) = E[L(g, gn)]



5.2 Curve Estimation (Smoothing)

The risk can be written as
Rig.&n) = [ B09dx+ [ o

where
b(x) = E[gn(x)] - &(x)
is the bias of g,(x) at a fixed x and
v(x) = Var(gn(x))

is the variance of g,(x) at a fixed x.



5.2.1 Histogram

Let Xy, X2, ..., X be IID on [0, 1] with density p. Let m be the
number of bins where each bin B;,i=1,2,..., m is defined by
Bi = [ m m)

Define the binwidth h = 1/m and let v be the number of
observations in B; and p; = %

The histogram estimator is defined by

A

Pn(x) = % if xe B;

which can be written succinctly as

n

Pa) =3 %/(x c B)

i=1

where I(x € B;) =1 if x € B; and 0 otherwise.



5.2.1 Histogram

Theorem. For fixed x, m, let B; be the bin containing x. Then

n Pj
Epn()] = &
and " .
Var(ps(x9) = PP

Theorem. Suppose that [ p/(x)?dx < co. Then

R(Pn:p) ~ 75 /(p )?du +

The value h* that minimizes this is
) 1 6 1/3
= i fra)
With this choice of binwidth,




5.2.2 Kernel Density Estimation

Given a Kernel K and a positive bandwidth h, the kernel density
estimator (KDE) is defined to be

B9 = - > K

» KDE is smoother than histograms.

» KDE also converges faster to the true density than histograms.
A kernel is defined to be any smooth function K such that

> K(x) >0,

> [K(x)dx=1,

> [ xK(x)dx=0, and

> 02 = [xPK(x)dx > 0.



5.2.2 Kernel Density Estimation

Theorem Under some assumptions on p and K,

1 K2(x)d
R(p.pn) = ot [ (o ()2 + FIE

where 02 = [ >*K(x)dx. The optimal bandwidth is

~2/5 1/5 —~1/5
pro1 @2 S
/5

where c; = [ XK(x)dx, o = [ K(x)%dx and ¢z = [(p"(x))?dx.
With this choice of bandwidth,

~ Ca
R(p, pn) =~ A5

for some constant ¢; > 0.



5.3 Regression

Let we have a sample (X1, Y1), (X1, Y1), .., (Xn, Yn). Most of you
are familiar with a regression function as the minimizer r(x) of the
residual sums of squares

RSS = Z(y,- — (x))%

» Our definition of the regression function r(x) is

Hx) = EYIX =] = / yAly|x)dy.

» We approach the regression as a statistical inference problem.
That is, we infer the joint density of (X, Y), say p(x, y), to
estimate the conditional expected value.

» We will discuss (i) parametric and (ii) nonparametric
regression functions.



5.3.1 Parametric Regression

For simplicity, we will consider only linear models.

> \We assume that the conditional density of Y for a given

X = x is a Gaussian with a mean ag + «1X and a variance o2

p(y1x) = d(y; a0 + a1x, 0%)

where ¢ is a Gaussian density.

» Thus, the density is parametrized by ag and aj,
p(ylx; ap, 1)
and their joint density is

p(x, y) = p(yIx)p(x).



5.3.1 Parametric Regression

» The likelihood function is
Ln(ao, 1) = N7 p(yilxi; ao, a1)p(xi)

» Log-likelihood function is
n n
In(ao, 1) = > In p(yilxi; a0, 1) + Y _ p(x7)

» The last term is independent of the parameters.

» Thus, MLE is the maximizer of the following
n
> (yi— a0 — a1x)?,

that is, the minimizer of RSS.



5.3.2 Nonparametric Regression

» The definition of the regression function does not change. The
regression function r(x) is the conditional expected value of Y

r(x) = E[Y|X = .

» Estimate the joint density p(x, y) using a nonparametric
method, for example, KDE.

P Use the estimated density for the calculation of the regression
function

r(x) = E[YIX=x = /yp(yIX)dy: W



5.3.2 Nonparametric Regression

The Nadaraya-Watson nonparametric regression.

n

) = S wilx)y;

i
where K'is a Kernel and the weights w;(x) are given by

K( x; X;

i KCF)

wi(x) =



5.3.2 Nonparametric Regression

The Nadaraya-Watson nonparametric regression.

n

) = S wilx)y;

where K'is a Kernel and the weights w;(x) are given by
(X X,)
Y K

Exercise. Derive the Nadaraya-Watson nonparametric regression.

wi(x) =



5.4 Bootstrap

The bootstrap is a method for estimating standard errors se, i.e.,
the standard deviation of an estimator T.
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Varp(T,) is the variance of T, with respect to P.



5.4 Bootstrap

The bootstrap is a method for estimating standard errors se, i.e.,
the standard deviation of an estimator T.

1. Estimate Varp(T,) with Varp(T,).
2. Approximate Varg(T,) using simulation.

Varp(T,) is the variance of T, with respect to P.
How do we estimate Varp(T,)?

1. Draw {X!} from P.
. Compute T} using {X}}.

2
3. Repeat steps 1 and 2 M times, T* T
4

cey M.
. M 2
. Estimate Varp(T,) = ,Tl/, >om (T’,k,m — ﬁ > 7’,"7,,,)

nls-



Homework

1. Find and learn a KDE library of your choice.

2. Let X be a random variable with a density
30(x0,1) + 2¢(x; 1,1) where ¢(x; m,0?) is a Gaussian
density with a mean m and a variance o2.

3. Generate an IID sample of X.

4. From the sample, {X;}, estimate the density using (i)
histogram, and (ii) KDE.

5. Compute the relative entropy using the estimated densities.

6. Plot the relative entropy as a function of the sample size n.

7. Let Y= X2. Find the density of Y (numerically and
analytically).
8-9 For a Gaussian distribution N(1,1), we estimate the mean
using the sample mean of a sample {X;}

M= %ZX;.

8. Calculate the variance of m.
9. Estimate the variance of m using the bootstrap.



