Winter 2021 Math 106
 Topics in Applied Mathematics
 Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Lecture 7: Monte Carlo

7.1 Monte Carlo Integration

For a function $f(x)$ which is integrable over $[0,1]^{d}$, we want to calculate the mean value of f

$$
I[f]=\int_{[0,1]^{d}} f(x) d x=\bar{f}
$$

Setting: We assume that we know how to evaluate $f(x)$ but there is not simple formula for the antiderivative of $f(x)$.

- If we use a grid-based methods, the convergence rate is $\mathcal{O}\left(n^{-k / d}\right)$ where k is the order of the grid-based method.
- The Monte Carlo integration draws a sample $\left\{x_{i}\right\}$ from the inform distribution on $[0,1]^{d}$ and estimate the integral

$$
I[f] \approx \hat{I}_{n}[f]=\frac{1}{n} \sum_{i} f\left(x_{i}\right)
$$

- The convergence rate of the Monte Carlo integration is $\mathcal{O}\left(n^{-1 / 2}\right)$.

7.1 Monte Carlo Integration

- The probabilistic interpretation of $I[f]$ is that $I[f]$ is an expected value of $f(x)$ where x has the uniform density in $[0,1]^{d}$

$$
I[f]=E[f]=\int_{[0,1]^{d}} f(x) d x
$$

- From the law of large numbers,

$$
\hat{I}_{n}[f] \rightarrow I[f] .
$$

- Also, $\hat{I}_{n}[f]$ is unbiased

$$
E\left[\hat{I}_{n}[f]\right]=I[f]
$$

Exercise Prove that $\hat{I}_{n}[f]$ is unbiased.

7.1 Monte Carlo Integration

- Let $e_{n}[f]$ be the error of the Monte Carlo estimator

$$
e_{n}[f]=I_{n}[f]-l[f] .
$$

- From the Central limit theorem, for a large n, we have

$$
\begin{equation*}
e_{n}[f] \approx \sigma n^{-1 / 2} \nu \tag{1}
\end{equation*}
$$

where ν is a standard normal random variable and the constant σ^{2} is the variance of f, that is,

$$
\sigma^{2}=\left(\frac{1}{n} \int(f-l[f])^{2}\right)
$$

Exercise Prove (1) (you need to show the variance of $\hat{I}_{n}[f]$ first).

7.1 Monte Carlo Integration

Now we are interested in

$$
I[f p]=\int_{[0,1]^{d}} f(x) p(x) d x
$$

where $p(x) \geq 0, \int_{[0,1]^{d}} p(x) d x=1$.
There are two approaches for this problem

1. Draw a sample $\left\{x_{i}\right\}$ of size n from the uniform density of $[0,1]^{d}$ and

$$
I[f p] \approx \frac{1}{n} \sum_{i} f\left(x_{i}\right) p\left(x_{i}\right)
$$

2. Or draw a sample $\left\{x_{i}\right\}$ of size n from the density $p(x)$ and

$$
I[f p]=I_{p}[f] \approx \frac{1}{n} \sum_{i} f\left(x_{i}\right)
$$

7.1 Monte Carlo Integration

How do you decide which method to use?

7.1 Monte Carlo Integration

How do you decide which method to use?
Check the variances

$$
\sigma_{1}^{2}=\int(f p-l[f p])^{2} d x
$$

and

$$
\sigma_{2}^{2}=\int\left(f-I_{p}[f]\right)^{2} p d x
$$

Choose the method with a smaller variance.

7.2 Sampling Methods

Now we are concerned with a sampling method to generate a sample from a given density $p(x)$.

- Transformation method
- Acceptance-rejection method

7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation $X=f(Y)$ such that the density of X is $p(x)$.
Example. Cauchy density $p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$.
Example. Gaussian density $p(x ; 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-(x)^{2} / 2}$

7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation $X=f(Y)$ such that the density of X is $p(x)$.
Example. Cauchy density $p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$.
Example. Gaussian density $p(x ; 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-(x)^{2} / 2}$

$$
\begin{gathered}
P_{X}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t \\
=\frac{1}{2}+\frac{1}{2} \operatorname{erf}(x / \sqrt{2})
\end{gathered}
$$

where $\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t$, the error function.

$$
\begin{aligned}
y=P_{Y}(y) & =P_{X}(x)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \\
x & =\sqrt{2} \operatorname{erf}^{-1}(2 y-1)
\end{aligned}
$$

7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation $X=f(Y)$ such that the density of X is $p(x)$.
Example. Cauchy density $p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$.
Example. Gaussian density $p(x ; 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-(x)^{2} / 2}$

$$
\begin{gathered}
P_{X}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t \\
=\frac{1}{2}+\frac{1}{2} \operatorname{erf}(x / \sqrt{2})
\end{gathered}
$$

where $\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t$, the error function.

$$
\begin{aligned}
y=P_{Y}(y) & =P_{X}(x)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \\
x & =\sqrt{2} \operatorname{erf}^{-1}(2 y-1)
\end{aligned}
$$

Another method: Box-Muller method.

7.2.2 Acceptance-rejection method

For a given density $p(x)$, suppose that we know a function $q(x)$ satisfying

$$
q(x) \geq p(x)
$$

and that we have a way to sample from the density

$$
\tilde{q}(x)=q(x) / l[q] .
$$

- Pick two random variables, x^{\prime} and y, in which x^{\prime} is a trial variable chosen according to $\tilde{q}\left(x^{\prime}\right)$, and y is a decision variable chosen according to the uniform density on $0<y<1$.
- Accept if $0<y<p\left(x^{\prime}\right) / q\left(x^{\prime}\right)$
- Reject if $p\left(x^{\prime}\right) / q\left(x^{\prime}\right)<y<1$.

7.2.2 Acceptance-rejection method

* black: density of interest, $p(x)$, * gray: Gaussian, $q(x)$

7.2.2 Acceptance-rejection method

* black: density of interest, $p(x)$, * gray: Gaussian, $q(x)$ Idea of Proof.

$$
\begin{gathered}
p(x)=\frac{p(x)}{q(x)} \tilde{q}(x) I[q] \\
=\int_{0}^{1} I\left(\frac{p(x)}{q(x)}>y\right) d y \tilde{q}(x) I[q]
\end{gathered}
$$

where $I\left(\frac{p(x)}{q(x)}>y\right)=1$ if $\frac{p(x)}{q(x)}>y$ and 0 otherwise. So,

$$
\int f(x) p(x) d x=\iint_{0}^{1} f(x) I\left(\frac{p(x)}{q(x)}>y\right) d y \tilde{q}(x) I[q] d x
$$

7.3 Accuracy and Improvements

In the Monte Carlo integration of $I[f p]=\int f p d x$, the error e and the number n of samples are related by

$$
\begin{aligned}
& e=\mathcal{O}\left(\sigma n^{-1 / 2}\right) \\
& n=\mathcal{O}\left((\sigma / e)^{2}\right)
\end{aligned}
$$

where σ is the variance of f (or $f p$).
There are two approaches to improve the accuracy

- Increase the convergence rate
- or decrease the variance, i.e., variance reduction.

7.3.1 Quasi-Monte Carlo

- A deterministic sequence, not random
- Maintains uniformity
- Convergence rate $\mathcal{O}\left((\ln n)^{d} n^{-1}\right)$.

Standard Monte Carlo (left) and Quasi-Monte Carlo (right) samples of the same size 1000 .

7.3.2 Variance Reduction

Antithetic variates method For a sample value x where m is a mean of $p(x)$, also use the value $x^{\prime}=m-(x-m)$.
That is, if $\left\{x_{i}\right\}$ is a sample of size n,

$$
I[f p]=I_{p}[f] \approx \frac{1}{2 n} \sum_{i}^{n}\left(f\left(x_{i}\right)+f\left(m-\left(x_{i}-m\right)\right)\right.
$$

Motivation. If the standard deviation of $p(x)$, say $s t d_{p}$, is small,

$$
f(x)=f(m)+f^{\prime}(m) s t d_{p} \tilde{x}+\mathcal{O}\left(s t d_{p}^{2}\right)
$$

where $\tilde{x}=\frac{x}{s_{t+d_{p}}}$.

7.3.2 Variance Reduction

Control variates method If there is a function $g(x)$ such that g is similar to f and $I_{p}[g]=\int g(x) p(x) d x$ is known,

$$
\int f(x) p(x) d x=\int(f(x)-g(x)) p(x) d x+\int g(x) p(x) d x
$$

That is, the control variates is effective if the variance of $(f-g)$ is smaller than the variance of $f(x)$.
One may try the following idea to reduce the variance further. Introduce a multiplier λ

$$
\int f(x) p(x) d x=\int(f(x)-\lambda g(x)) p(x) d x+\lambda \int g(x) p(x) d x
$$

Use λ minimizing the variance of $f-\lambda g$.

7.3.2 Variance Reduction

Matching moments method Let m_{1} and m_{2} be the first and the second moments of $p(x)$. Also let α_{1} and α_{2} are the first and the second sample moments of a sample $\left\{x_{i}\right\}$.
Then, instead of $\left\{x_{i}\right\}$, use the following transformed sample $\left\{y_{i}\right\}$ that preserves the correct moments up to the second order

$$
y_{i}=\left(x_{i}-\alpha_{1}\right) c+m_{1}
$$

where $c=\sqrt{\frac{m_{2}-m_{1}^{2}}{\alpha_{2}-\alpha_{1}^{2}}}$.
Exercise. Show that the first two sample moments of $\left\{y_{i}\right\}$ are equal to the true moments m_{1} and m_{2}.

7.3.2 Variance Reduction

Stratification method For simplicity, let us consider an interval $\Omega=[0,1]$ and a problem of

$$
\int_{[0,1]} f(x) d x
$$

For a fixed $m>0$, divide $[0,1]$ into M equal subintervals $\Omega_{k}=\left[\frac{k-1}{M}, \frac{k}{m}\right]$.
Also for simplicity, assume that the sample size n is a multiple of m. Then, for each $k \leq m$, sample n / m points $\left\{x_{i}^{k}\right\}$ uniformly distributed in Ω_{k}.

$$
\int_{[0,1]} f(x) d x \approx \frac{1}{n} \sum_{k}^{m} \sum_{i}^{n / m} f\left(x_{i}^{k}\right)
$$

Then the error e is

$$
e \approx n^{-1 / 2} \sigma_{s}
$$

where $\sigma_{s}^{2}=\sum_{k}^{m} \int_{\Omega_{k}}\left(f(x)-\bar{f}_{k}\right)^{2} d x$ and $\bar{f}_{k}=\int_{\Omega_{k}} f(x) d x$.

7.3.2 Variance Reduction

Method: Stratification

Claim. The variance σ_{s}^{2} is smaller than the variance without stratification $\sigma^{2}=\int_{[0,1]}(f-\bar{f})^{2} d x$ where $\bar{f}=\int_{[0,1]} f(x) d x$.

7.3.2 Variance Reduction

Method: Stratification

Claim. The variance σ_{s}^{2} is smaller than the variance without stratification $\sigma^{2}=\int_{[0,1]}(f-\bar{f})^{2} d x$ where $\bar{f}=\int_{[0,1]} f(x) d x$.
Idea of proof. The minimizer c of $\int_{\Omega_{k}}(f(x)-c)^{2} d x$ is
$\bar{f}_{k}=\int_{\Omega_{k}} f(x) d x$.

7.4 Example

We want to calculate

$$
p=\int_{2}^{\infty} \frac{1}{\pi\left(1+x^{2}\right)} d x=0.15
$$

- Estimator 1: $\hat{p}_{1}=\frac{1}{n} \sum_{i}^{n} I\left(X_{i}>2\right)$ where $\left\{X_{i}\right\}$ is from Cauchy
- Estimator 2 : $\hat{p}_{2}=\frac{1}{2 n} \sum_{i}^{n} I\left(\left|X_{i}\right|>2\right)$ where $\left\{X_{i}\right\}$ is from Cauchy
- Estimator 3: $\hat{p}_{3}=\frac{1}{2}-\frac{1}{n} \sum_{i}^{n} \frac{1}{\pi\left(1+X_{i}\right)^{2}}$ where $\left\{X_{i}\right\}$ is from Uniform [0,2].
- Estimator 4: $\hat{p}_{4}=\frac{1}{n} \sum_{i}^{n} \frac{X_{i}^{-2}}{\pi\left(1+X_{i}^{-2}\right)}$ where $\left\{X_{i}\right\}$ is from Uniform[0,1/2].

Homework

1. Numerically calculate the variances of estimator $1,2,3$ and 4 in the previous slide (show your work). Compare them with analytic results if possible.
