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7.1 Monte Carlo Integration

For a function f (x) which is integrable over [0, 1]d , we want to
calculate the mean value of f

I [f ] =

∫
[0,1]d

f (x)dx = f .

Setting: We assume that we know how to evaluate f (x) but there
is not simple formula for the antiderivative of f (x).

I If we use a grid-based methods, the convergence rate is
O(n−k/d) where k is the order of the grid-based method.

I The Monte Carlo integration draws a sample {xi} from the
inform distribution on [0, 1]d and estimate the integral

I [f ] ≈ În[f ] =
1

n

∑
i

f (xi ).

I The convergence rate of the Monte Carlo integration is
O(n−1/2).



7.1 Monte Carlo Integration

I The probabilistic interpretation of I [f ] is that I [f ] is an
expected value of f (x) where x has the uniform density in
[0, 1]d

I [f ] = E [f ] =

∫
[0,1]d

f (x)dx

I From the law of large numbers,

În[f ]→ I [f ].

I Also, În[f ] is unbiased

E [În[f ]] = I [f ].

Exercise Prove that În[f ] is unbiased.



7.1 Monte Carlo Integration

I Let en[f ] be the error of the Monte Carlo estimator

en[f ] = In[f ]− I [f ].

I From the Central limit theorem, for a large n, we have

en[f ] ≈ σn−1/2ν (1)

where ν is a standard normal random variable and the
constant σ2 is the variance of f , that is,

σ2 =

(
1

n

∫
(f − I [f ])2

)
.

Exercise Prove (1) (you need to show the variance of În[f ] first).



7.1 Monte Carlo Integration

Now we are interested in

I [fp] =

∫
[0,1]d

f (x)p(x)dx

where p(x) ≥ 0,
∫

[0,1]d p(x)dx = 1.
There are two approaches for this problem

1. Draw a sample {xi} of size n from the uniform density of
[0, 1]d and

I [fp] ≈ 1

n

∑
i

f (xi )p(xi ).

2. Or draw a sample {xi} of size n from the density p(x) and

I [fp] = Ip[f ] ≈ 1

n

∑
i

f (xi ).



7.1 Monte Carlo Integration

How do you decide which method to use?

Check the variances

σ2
1 =

∫
(fp − I [fp])2dx

and

σ2
2 =

∫
(f − Ip[f ])2pdx .

Choose the method with a smaller variance.
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7.2 Sampling Methods

Now we are concerned with a sampling method to generate a
sample from a given density p(x).

I Transformation method

I Acceptance-rejection method



7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation
X = f (Y ) such that the density of X is p(x).
Example. Cauchy density p(x) = 1

π(1+x2)
.

Example. Gaussian density p(x ; 0, 1) = 1√
2π
e−(x)2/2

PX (x) =
1√
2π

∫ x

−∞
e−t

2/2dt

=
1

2
+

1

2
erf (x/

√
2)

where erf (z) = 2√
π

∫ z
0 e−t

2
dt, the error function.

y = PY (y) = PX (x) =
1

2
+

1

2
erf (x/

√
2)

x =
√

2erf −1(2y − 1).

Another method: Box-Muller method.



7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation
X = f (Y ) such that the density of X is p(x).
Example. Cauchy density p(x) = 1

π(1+x2)
.

Example. Gaussian density p(x ; 0, 1) = 1√
2π
e−(x)2/2

PX (x) =
1√
2π

∫ x

−∞
e−t

2/2dt

=
1

2
+

1

2
erf (x/

√
2)

where erf (z) = 2√
π

∫ z
0 e−t

2
dt, the error function.

y = PY (y) = PX (x) =
1

2
+

1

2
erf (x/

√
2)

x =
√

2erf −1(2y − 1).

Another method: Box-Muller method.



7.2.1 Transformation method

Let Y be a uniform random variable and look for a transformation
X = f (Y ) such that the density of X is p(x).
Example. Cauchy density p(x) = 1

π(1+x2)
.

Example. Gaussian density p(x ; 0, 1) = 1√
2π
e−(x)2/2

PX (x) =
1√
2π

∫ x

−∞
e−t

2/2dt

=
1

2
+

1

2
erf (x/

√
2)

where erf (z) = 2√
π

∫ z
0 e−t

2
dt, the error function.

y = PY (y) = PX (x) =
1

2
+

1

2
erf (x/

√
2)

x =
√

2erf −1(2y − 1).

Another method: Box-Muller method.



7.2.2 Acceptance-rejection method

For a given density p(x), suppose that we know a function q(x)
satisfying

q(x) ≥ p(x),

and that we have a way to sample from the density

q̃(x) = q(x)/I [q].

I Pick two random variables, x ′ and y , in which x ′ is a trial
variable chosen according to q̃(x ′), and y is a decision variable
chosen according to the uniform density on 0 < y < 1.

I Accept if 0 < y < p(x ′)/q(x ′)

I Reject if p(x ′)/q(x ′) < y < 1.



7.2.2 Acceptance-rejection method

* black: density of interest, p(x), * gray: Gaussian, q(x)

Idea of Proof.

p(x) =
p(x)

q(x)
q̃(x)I [q]

=

∫ 1

0
I (
p(x)

q(x)
> y)dyq̃(x)I [q]

where I (p(x)
q(x) > y) = 1 if p(x)

q(x) > y and 0 otherwise. So,∫
f (x)p(x)dx =

∫ ∫ 1

0
f (x)I (

p(x)

q(x)
> y)dyq̃(x)I [q]dx
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7.3 Accuracy and Improvements

In the Monte Carlo integration of I [fp] =
∫
fpdx , the error e and

the number n of samples are related by

e = O(σn−1/2),

n = O((σ/e)2).

where σ is the variance of f (or fp).
There are two approaches to improve the accuracy

I Increase the convergence rate

I or decrease the variance, i.e., variance reduction.



7.3.1 Quasi-Monte Carlo

I A deterministic sequence, not random

I Maintains uniformity

I Convergence rate O((ln n)dn−1).

Standard Monte Carlo (left) and Quasi-Monte Carlo (right)
samples of the same size 1000.



7.3.2 Variance Reduction

Antithetic variates method For a sample value x where m is a
mean of p(x), also use the value x ′ = m − (x −m).
That is, if {xi} is a sample of size n,

I [fp] = Ip[f ] ≈ 1

2n

n∑
i

(f (xi ) + f (m − (xi −m)).

Motivation. If the standard deviation of p(x), say stdp, is small,

f (x) = f (m) + f ′(m)stdp x̃ +O(std2
p )

where x̃ = x
stdp

.



7.3.2 Variance Reduction

Control variates method If there is a function g(x) such that g
is similar to f and Ip[g ] =

∫
g(x)p(x)dx is known,∫

f (x)p(x)dx =

∫
(f (x)− g(x))p(x)dx +

∫
g(x)p(x)dx .

That is, the control variates is effective if the variance of (f − g) is
smaller than the variance of f (x).
One may try the following idea to reduce the variance further.
Introduce a multiplier λ∫

f (x)p(x)dx =

∫
(f (x)− λg(x))p(x)dx + λ

∫
g(x)p(x)dx .

Use λ minimizing the variance of f − λg .



7.3.2 Variance Reduction

Matching moments method Let m1 and m2 be the first and the
second moments of p(x). Also let α1 and α2 are the first and the
second sample moments of a sample {xi}.
Then, instead of {xi}, use the following transformed sample {yi}
that preserves the correct moments up to the second order

yi = (xi − α1)c + m1

where c =

√
m2−m2

1

α2−α2
1

.

Exercise. Show that the first two sample moments of {yi} are
equal to the true moments m1 and m2.



7.3.2 Variance Reduction

Stratification method For simplicity, let us consider an interval
Ω = [0, 1] and a problem of∫

[0,1]
f (x)dx .

For a fixed m > 0, divide [0, 1] into M equal subintervals
Ωk = [k−1

M , k
m ].

Also for simplicity, assume that the sample size n is a multiple of
m. Then, for each k ≤ m, sample n/m points {xki } uniformly
distributed in Ωk .∫

[0,1]
f (x)dx ≈ 1

n

m∑
k

n/m∑
i

f (xki ).

Then the error e is
e ≈ n−1/2σs

where σ2
s =

∑m
k

∫
Ωk

(f (x)− f k)2dx and f k =
∫

Ωk
f (x)dx .



7.3.2 Variance Reduction

Method: Stratification
Claim. The variance σ2

s is smaller than the variance without
stratification σ2 =

∫
[0,1](f − f )2dx where f =

∫
[0,1] f (x)dx .

Idea of proof. The minimizer c of
∫

Ωk
(f (x)− c)2dx is

f k =
∫

Ωk
f (x)dx .
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7.4 Example

We want to calculate

p =

∫ ∞
2

1

π(1 + x2)
dx = 0.15

I Estimator 1: p̂1 = 1
n

∑n
i I (Xi > 2) where {Xi} is from Cauchy

I Estimator 2:
p̂2 = 1

2n

∑n
i I (|Xi | > 2) where {Xi} is from Cauchy

I Estimator 3: p̂3 = 1
2 −

1
n

∑n
i

1
π(1+Xi )2 where {Xi} is from

Uniform[0,2].

I Estimator 4: p̂4 = 1
n

∑n
i

X−2
i

π(1+X−2
i )

where {Xi} is from

Uniform[0,1/2].



Homework

1. Numerically calculate the variances of estimator 1,2,3 and 4 in
the previous slide (show your work). Compare them with
analytic results if possible.


