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8.1 Importance Sampling

I Importance sampling is a sampling method with a reduced
variance.

I Assume that we are interested in the evaluation of the
following integral

Ep[f ] =

∫
f (x)p(x)dx

where p(x) is a probability density.

I Let g(x) is another probability density with a support
containing the support of f (x) and it is easy to draw a
sample from g(x).

I Importance sampling use the following idea of a change of
variables ∫

f (x)p(x)dx =

∫
f (x)p(x)

g(x)
g(x)dx



8.1 Importance Sampling

If {xi} is IID from g(x), the integral is approximated by

Ep[f ] ≈ 1

n

n∑
i

f (xi )p(xi )

g(xi )
=

1

n

n∑
i

wi f (xi )

where wi = p(xi )
g(xi )

is the weight of xi . Note that there is no g(xi ) in
the numerator.



8.1 Importance Sampling

Example: Small tail probabilities: rare events.

I Among many other applications of the importance sampling, a
small tail probability is a good example related to rare events.

I Let we are interested in the following probability using a
Monte Carlo method

µ(Z > 4.5) =

∫ 4.5

−∞

1√
2π

e−x
2/2dx

where Z is the standard normal random variable.

I As we know the analytic form of the density that is easy to
integrate, the probability we are looking for is 3.39× 10−6, a
really small probability.



8.1 Importance Sampling

Example: Small tail probabilities: rare events.

I A programming tip: a fast calculation for counting (code
example in Matlab/Python)

I What is your expected sample size to calculate the small
probability?

I The small probability is of order 10−6. This means that we
can expect only a few values larger than 4.5 out of million
sample values.

I Try in Matlab/Python

I Importance sampling using a fat tail distribution (we used the
Cauchy density) increases the accuracy (or decrease the
sample size to estimate the small density).
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8.2 Finite Variance

I The variance of the importance sampling estimator is

Eg

[
f 2(x)p2(x)

g2(x)

]
− Eg

[
f (x)p(x)

g(x)

]2
.

I To have a finite variance, we need to have∫
f 2(x)p2(x)

g(x)
dx <∞.

I That is, the ratio p(x)/g(x) must be bounded.

I This implies that the tails of g(x) must be fatter than those
of p(x).



8.2 Finite Variance

Theorem. The choice of g(x) that minimizes the variance of the
importance sampling estimator is

g∗(x) =
|f (x)|p(x)∫
|f (s)|p(s)ds

Idea of Proof.

I The variance of the importance sampling estimator is given by

Eg

[
f 2(x)p2(x)

g2(x)

]
− Eg

[
f (x)p(x)

g(x)

]2
where the second term is independent of g(x).

I From the Jensen’s inequality, the lower bound of the first term
is

Eg

[
f 2(x)p2(x)

g2(x)

]
≥
(
Eg

[
|f (x)|p(x)

g(x)

])2

I The lower bound is obtained by g∗(x) = |f (x)|p(x)∫
|f (s)|p(s)ds .



8.2 Finite Variance

I An alternative importance sampling estimator with increased
stability is ∑n

i
f (xi )p(xi )

g(xi )∑n
i

p(xi )
g(xi )

instead of the standard importance sampling estimator

1

n

n∑
i

f (xi )p(xi )

g(xi )
.

I This is motivated by the following convergence

1

n

n∑
i

p(xi )

g(xi )
→ 1 as n→∞

I This estimator is biased but the bias is small.



8.2 Finite Variance

Also, the following approach is preferred to achieve a stable
importance density g(x) with fat tails

g(x) = ρh(x) + (1− ρ)l(x), 0 < ρ < 1

where h(x) is close to p(x) and l(x) has fat tails.



8.3 Sequential Importance Sampling

Example: Target tracking (Gordon et al. 1993). We consider
a tracking problem where an object (an airplane, a pedestrian or a
ship) is observed through some noisy measurement of its angular
position Zt at time t. Of interests are the position (Xt ,Yt) of the
object in the plane and its speed (Ẋt , Ẏt). The model is then
discretized as Ẋt = Xt+1 − Xt , Ẏt = Yt+1 − Yt , and

Ẋt = Ẋt−1 + τεxt

Ẏt = Ẏt−1 + τεyt

Zt = arctan(Yt/Xt) + ηεzt ,

where εxt , ε
y
t , and εzt are iid N(0, 1) random variables. We are

interested in pt(θt |z1:t) where θt = (τ, η, Ẋt , Ẏt) and z1:t denotes
the vector (z1, z2, ..., zt).



8.3 Sequential Importance Sampling

I The importance sampling is useful when a sequence of target
distributions pt(x) (where t is an index for time) is available.

I Let observations vt is available at times t = m∆t where
m ∈ R and ∆t is a time interval.

I Then we have a new posterior density pt(x) using the new
observation vt

pt(x) = p(x(t)|vt) ∼ p(x(t))p(vt |x(t))



8.3 Sequential Importance Sampling

I Drawing a sample from the posterior at each step is costly.

I Importance sampling is ideally suited for this problem in that
the densities pt and pt+1 are defined in the same space.

I That is, use the prior density as your importance density for
the posterior density.

I The weight is given by

w(t) = w(t − 1)ft(x)/gt(x)

where ft(x) is the posterior and gt(x) is the prior.



8.3 Sequential Importance Sampling

Weight Degeneracy.

I

w(t) = w(t−1)
ft(x)

gt(x)
= w(t−2)

ft(x)ft−1(x)

gt(x)gt−1(x)
· · · = w(0)Π

ft−i (x)

gt−i (x)
.

I Equivalently,

w(t) = w(0) exp
(∑

ln(ft−i (x)/gt−i (x))
)
.

I In the special case where gt−i and ft−i are both independent
of time, approximately we have

w(t) ∼ exp (−tEg [ln g(x)/f (x)]) .

I Thus as t →∞, w degenerates to 0

w(t)→ 0.



Homework

1 For the normal-Cauchy Bayes estimator

δ(x) =

∫∞
−∞

θ
1+θ2

e−(x−θ)
2/2dθ∫∞

−∞
1

1+θ2
e−(x−θ)2/2dθ

,

which is the posterior mean of θ with a Cauchy prior density
and a normal likelihood,

1.1 Use Monte Carlo integration to calculate the integral.
1.2 What is the standard error with a sample size n = (a) 100, (b)

1000 and (c) 10000.

2 For a Gaussian random variable X with a mean 0 and a
variance σ2, prove that

E [e−X
2
] =

1√
2σ2 + 1

.



Homework

3 Make a one-paragraph summary of particle filtering (max 5
sentences).



Homework


