Winter 2021 Math 106
 Topics in Applied Mathematics
 Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)
Lecture 10: Hilbert Space

10.1 Function Space

- A function space is a set of functions \mathcal{F} that has some structure.
- Often a nonparametric density estimation or a function approximation is chosen to lie in some function space, where the assumed structure is exploited by algorithms and theoretical analysis.
Let V be a vector space over \mathbb{R}. A norm is a mapping
$\|\cdot\|: V \rightarrow[0, \infty)$ that satisfies

1. $\|x+y\| \leq\|x\|+\|y\|$.
2. $\|a x\|=|a|\|x\|$ for all $a \in \mathbb{R}$.
3. $\|x\|=0$ implies $x=0$.

A vector space equipped with a norm is called a normed vector space.
Example. $V=\mathbb{R}^{k}$ with $\|x\|=\sqrt{\sum_{i} x_{i}^{2}}$.

10.1 Function Space

- A sequence x_{1}, x_{2}, \ldots is said to converge to x if $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$.
- A sequence x_{1}, x_{2}, \ldots in a normed space is a Cauchy sequence if $\left\|x_{m}-x_{n}\right\| \rightarrow 0$ as $m, n \rightarrow \infty$.
- The space is complete if every Cauchy sequence converges to a limit.
- A complete, normed vector space is called a Banach space.

Example. $L^{p}([0,1])$ spaces, $1 \leq p \leq \infty$

$$
\left\{f(x): \int\left|f^{p}(x)\right|^{p} d x<\infty\right\}
$$

10.2 Hilbert Space

- An inner product is a mapping $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies, for all $x, y, z \in V$ and $a \in \mathbb{R}$:

$$
\begin{aligned}
& \text { 1. }\langle x, y\rangle \geq 0 \text { and }\langle x, x\rangle=0 \text { if and only if } x=0 \\
& \text { 2. }\langle x, y+z\rangle=\langle x, x\rangle+\langle x, z\rangle \\
& \text { 3. }\langle x, a y\rangle=a\langle x, y\rangle \\
& \text { 4. }\langle x, y\rangle=\langle y, x\rangle
\end{aligned}
$$

Example. $V=\mathbb{R}^{k}$ with $\langle x, y\rangle=\sum_{i} x_{i} y_{i}$.
Example. $V=L^{2}([0,1])$ with $\langle f, g\rangle=\int f(x) g(x) d x$.

- x and y are orthogonal if $\langle x, y\rangle=0$
- Cauchy-Schwartz inequality

$$
|\langle x, y\rangle| \leq\|x\|\|y\| .
$$

Example. $\int f(x) g(x) d x \leq\left(\int f^{2} d x\right)^{1 / 2}\left(\int g^{2} d x\right)^{1 / 2}$

10.2 Hilbert Space

- An inner product space is a normed space with the norm $\|x\|=\langle x, x\rangle$.
- Parallelogram property

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

- A Hilbert space, H, is a complete, inner product vector space.
- Given a set $S \subset H$ of a normed linear space and some point b outside of S, the distance between b and S is defined as

$$
d(b, S)=\inf _{x \in S}\|x-b\|
$$

- Note that in general there is no guarantee that there exists a point $u \in S$ such that $d(b, S)=\|u-b\|$ (this is why we have inf instead of \min).

10.2 Hilbert Space

Theorem. A set $S \subset H$ is called closed if every convergent sequence $\left\{x_{n}\right\}$ in S converges to an element of S. If S is a closed linear space of a Hilbert space H and b is an element of H, then there exists $u \in S$ such that $\|u-b\|=d(b, S)$.
Idea of Proof.

- There exists a sequence $\left\{u_{n}\right\} \in S$ such that

$$
\left\|u_{n}-b\right\| \rightarrow d(b, S) \text { as } n \rightarrow \infty
$$

- This does not mean that $\left\{u_{n}\right\}$ has a limit in S in general.
- From

$$
\begin{aligned}
& \left\|\frac{1}{2}\left(b-u_{m}\right)\right\|^{2}+\left\|\frac{1}{2}\left(b-u_{n}\right)\right\|^{2}=\frac{1}{2}\left\|b-\frac{1}{2}\left(u_{n}+u_{m}\right)\right\|^{2}+\frac{1}{8}\left\|u_{n}-u_{m}\right\|^{2}, \\
& \left\|u_{n}-u_{m}\right\| \rightarrow 0 \text { and thus }\left\{u_{n}\right\} \text { is a Cauchy sequence. }
\end{aligned}
$$

- From the definition of the Hilbert space, there exists $u \in S$ such that $d(b, S)=\|u-b\|$.

10.2 Hilbert Space

- For a closed subspace S of H and $x \in S, \hat{x}$ such that $d(x, S)=\|\hat{x}-x\|$ is called the closest point of x in S or the projection of x onto S.
Theorem. Let S be a closed linear subspace of H, let x be any element of S, b any element of V, and \hat{b} the project of b onto S. Then

$$
\langle x-\hat{b}, b-\hat{b}\rangle=0
$$

Proof. If $x=\hat{b}$, we are done. Otherwise, set
$\theta(x-\hat{b})-(b-\hat{b})=\theta x+(1-\theta) \hat{b}-b=y-b$ where $y=\theta x+(1-\theta) \hat{b}$.
Since y is in S and $\|y-b\| \geq\|\hat{b}-b\|$, we have
$\|\theta(x-\hat{b})-(b-\hat{b})\|^{2}=\theta^{2}\|x-\hat{b}\|^{2}-2 \theta(x-\hat{b}, b-\hat{b})+\|b-\hat{b}\|^{2} \geq\|b-\hat{b}\|^{2}$.
Therefore, $\theta^{2}\|x-\hat{b}\|^{2}-2 \theta\langle x-\hat{b}, b-\hat{b}\rangle \geq 0$ for all θ.

10.2 Hilbert Space

- For a closed subspace S of H and $x \in S, \hat{x}$ such that $d(x, S)=\|\hat{x}-x\|$ is called the closest point of x in S or the projection of x onto S.
Theorem. Let S be a closed linear subspace of H, let x be any element of S, b any element of V, and \hat{b} the project of b onto S.
Then

$$
\langle x-\hat{b}, b-\hat{b}\rangle=0
$$

Proof.

Therefore, $\theta^{2}\|x-\hat{b}\|^{2}-2 \theta\langle x-\hat{b}, b-\hat{b}\rangle \geq 0$ for all θ.
The left-hand side attains its minimum value when
$\theta=\langle x-\hat{b}, b-\hat{b}\rangle /\|x-\hat{b}\|^{2}$, in which case

$$
-\langle x-\hat{b}, b-\hat{b}\rangle^{2} /\|x-\hat{b}\|^{2} \geq 0
$$

This implies

$$
\langle x-\hat{b}, b-\hat{b}\rangle=0
$$

10.2 Hilbert Space

- For a closed subspace S of H and $x \in S, \hat{x}$ such that $d(x, S)=\|\hat{x}-x\|$ is called the closest point of x in S or the projection of x onto S.
Theorem. Let S be a closed linear subspace of H, let x be any element of S, b any element of V, and \hat{b} the project of b onto S. Then

$$
\langle x-\hat{b}, b-\hat{b}\rangle=0
$$

Proof.

Corollary. $b-\hat{b}$ is orthogonal to S.
Corollary. \hat{b} is unique.

10.3 Parametric Regression

Example. For a given data set $\left\{\left(x_{i}, y_{i}\right), i=1,2, \ldots, m\right\}$, let we want a linear function fit to the data

$$
y_{i}=a x_{i}+b
$$

In a matrix form, we are looking for a and b such that

$$
\left(\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{m} & 1
\end{array}\right)\binom{a}{b}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

In a more general form, we are looking for a solution u to the following linear system

$$
A u=v
$$

where A is an $m \times n$ and $m>n$.

10.3 Parametric Regression

Example. (cont'd) If we assume that the column vectors of A are linearly independent, what can we say about the existence of the solution u ?

- If $A u=v$ has a solution, then one can express v as a linear combination of $A_{1}, A_{2}, \ldots, A_{n}$ (the column vectors of A). That is, if v is not in the column space of A, there is no solution.
- The best we can represent about v is the projection of v into the column space of A, \hat{v}.
- Then, does $A u=\hat{v}$ has a solution? From the previous slides, we know

$$
\left\langle A_{1}, \hat{v}-v\right\rangle=0,\left\langle A_{2}, \hat{v}-v\right\rangle=0, \ldots,\left\langle A_{n}, \hat{v}-v\right\rangle=0
$$

That is, $A^{T}(A u-v)=A^{T}(\hat{v}-v)=0$, i.e., $A^{T} A u=A^{T} v$. As $A^{T} A$ is invertible, we have

$$
u=\left(A^{T} A\right)^{-1} A^{T} v, \text { the regression formula! }
$$

10.4 Orthonormal Basis

Definition. An orthonormal basis of a Hilbert Space H is a family $\left\{e_{k} \in H\right\}_{k \in B}$ if it satisfies

1. $\left\langle e_{k}, e_{j}\right\rangle=0$ for all $k \neq j, k, j \in B$.
2. $\left\|e_{k}\right\|=1$ for all $k \in B$.
3. The linear span of $\left\{e_{k}\right\}$ is dense in H.

If the index set B is countable, the Hilbert space is called separable. That is, for any $u \in H, u$ can be represented as

$$
u=\sum_{i \in B} \beta_{i} e_{i}
$$

for an orthonormal basis $\left\{e_{i}\right\}$.
Note. We will consider only separable Hilbert spaces.

- $\beta_{i}=\left\langle u, e_{i}\right\rangle$.
- $\|u\|^{2}=\sum_{i \in B} \beta_{i}^{2}$.

10.4 Orthonormal Basis

Examples.

- $\left\{e^{2 \pi i n x}\right\}_{n=-\infty}^{\infty}$ is an orthogonal basis of $L^{2}[0,1]$.
- The Legendre polynomial is another orthogonal basis for $L^{2}[0,1]$.
- The Hermite polynomial is an orthogonal basis of $L^{2}(\mathbb{R})$.

