Winter 2021 Math 106
 Topics in Applied Mathematics
 Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)
Lecture 11: Smoothing using Orthogonal
Functions

11.1 Density estimation using orthogonal functions

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be IID observations from a distribution on $[0,1]$ with density f. If we assume that $f \in L^{2}$, we can write

$$
f(x)=\sum_{j=0}^{\infty} \beta_{j} \phi_{j}(x)
$$

where $\left\{\phi_{j}\right\}$ is an orthonormal basis of $L^{2}[0,1]$.

- If we know $f(x)$, the coefficient β_{j} is given by

$$
\beta_{j}=\int_{[0,1]} f(x) \phi_{j}(x) d x
$$

- The above formula looks similar to the Kernel density estimation. But the basis function $\phi_{j}(x)$ does not necessarily have measure 1 in contrast to the Kernel.
- Without knowing $f(x)$, how can we calculate the coefficient β_{j} ? We need to estimate it using the data.

11.1 Density estimation using orthogonal functions

- The estimate $\hat{\beta}_{j}$ of β_{j} is given by

$$
\hat{\beta}_{j}=\frac{1}{n} \sum_{i}^{n} \phi_{j}\left(x_{i}\right)
$$

Theorem. The mean and variance of $\hat{\beta}_{j}$ are

$$
E\left[\hat{\beta}_{j}\right]=\beta_{j}, \quad \operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{\sigma_{j}^{2}}{n}
$$

where $\sigma_{j}^{2}=\operatorname{Var}\left(\phi_{j}\left(X_{i}\right)\right)=\int\left(\phi_{j}(x)-\beta_{j}\right)^{2} f(x) d x$. Proof.

$$
E\left[\hat{\beta}_{j}\right]=\frac{1}{n} \sum_{i}^{n} E\left[\phi_{j}\left(X_{i}\right)\right]=E\left[\phi_{j}\left(X_{1}\right)\right)=\int \phi_{j}(x) f(x) d x=\beta_{j}
$$

11.1 Density estimation using orthogonal functions

- The estimate $\hat{\beta}_{j}$ of β_{j} is given by

$$
\hat{\beta}_{j}=\frac{1}{n} \sum_{i}^{n} \phi_{j}\left(x_{i}\right)
$$

Theorem. The mean and variance of $\hat{\beta}_{j}$ are

$$
E\left[\hat{\beta}_{j}\right]=\beta_{j}, \quad \operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{\sigma_{j}^{2}}{n}
$$

where $\sigma_{j}^{2}=\operatorname{Var}\left(\phi_{j}\left(X_{i}\right)\right)=\int\left(\phi_{j}(x)-\beta_{j}\right)^{2} f(x) d x$. Proof.

$$
E\left[\hat{\beta}_{j}\right]=\frac{1}{n} \sum_{i}^{n} E\left[\phi_{j}\left(X_{i}\right)\right]=E\left[\phi_{j}\left(X_{1}\right)\right)=\int \phi_{j}(x) f(x) d x=\beta_{j}
$$

Exercise. Prove the variance.

11.1 Density estimation using orthogonal functions

- For a given $f(x)$, we know that

$$
\begin{equation*}
\sum_{j}^{J} \beta_{j} \phi_{j}(x) \tag{1}
\end{equation*}
$$

is more accurate if $J \in \mathbb{N}$ increases.

- This is not true anymore with the estimates $\left\{\hat{\beta}_{j}\right\}$. Think about the regression. A higher order polynomial regression function is not always better than a lower order polynomial regression function (bias and variance tradeoff).
- J is called the smoothing parameter. It is typically chosen between 1 and \sqrt{n} where n is the sample size. J is chosen so that it minimizes the risk (or mean integrated squared error).

11.1 Density estimation using orthogonal functions

Let $\hat{f}(x)$ is an estimate of $f(x)$ given by

$$
\hat{f}(x)=\sum_{j}^{J} \hat{\beta}_{j} \phi_{j}(x) .
$$

Remember that the risk of \hat{f} using a smoothing parameter J is the expected value of the L^{2} error, that is

$$
R(J)=E\left[\int(\hat{f}(x)-f(x))^{2} d x\right]=\sum_{j=1}^{J} \frac{\sigma_{j}^{2}}{n}+\sum_{j=J+1}^{\infty} \beta_{j}^{2}
$$

11.1 Density estimation using orthogonal functions

Theorem. An estimate of the risk $R(J)$ is

$$
\hat{R}(J)=\sum_{j=1}^{J} \frac{\hat{\sigma}_{j}^{2}}{n}+\sum_{j=J+1}^{\infty}\left(\hat{\beta}_{j}^{2}-\frac{\hat{\sigma}_{j}^{2}}{n}\right)_{+}
$$

where $a_{+}=\max \{a, 0\}$ and

$$
\hat{a}_{j}^{2}=\frac{1}{n-1} \sum_{i}^{n}\left(\phi_{j}\left(X_{i}\right)-\hat{\beta}_{j}\right)^{2}
$$

- Using the J^{*} that minimizes $\hat{R}(J)$, the estimate of the density $\hat{f}(x)$ is given by

$$
\hat{f}(x)=\sum_{j}^{J^{*}} \hat{\beta}_{j} \phi_{j}(x)
$$

- Note that $\hat{f}(x)$ can be negative!! If so, take $\hat{f}^{*}=\max (\hat{f}, 0)$ and normalize it.

11.2 Regression

For a data set $\left\{X_{i}, Y_{i}\right\}$,

- Remember that the regression function $r(x)$ is defined as the expected value of Y given x

$$
r(x)=E[Y \mid X=x] .
$$

- We studied parametric and nonparametric regressions. In particular, for nonparametric regression, we know a kernel density estimation based regression method.
- It is also possible to calculate a regression function using density estimation with orthogonal functions.
- Assume that $r(x)$ is in $L^{2}(0,1)$ and x_{i} is uniformly distributed.
- $r(x)=\sum_{j=1}^{\infty} \beta_{j} \phi_{j}(x)$ where $\beta_{j}=\int_{0}^{1} r(x) \phi_{j}(x) d x$ for an orthonormal basis $\left\{\phi_{j}\right\}$ of $L^{2}(0,1)$.

11.2 Regression

- The estimate of $\beta_{j}, \hat{\beta}_{j}$ is given by

$$
\hat{\beta}_{j}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \phi_{j}\left(x_{i}\right), \quad j=1,2, \ldots
$$

Theorem.

$$
\hat{\beta}_{j} \sim N\left(\beta_{j}, \frac{\sigma^{2}}{n}\right)
$$

where σ^{2} is the variance of the measurement error e_{i}

$$
Y_{i}=r\left(x_{i}\right)+e_{i}
$$

Idea of Proof. For the mean,

$$
\begin{gathered}
E\left[\hat{\beta}_{j}\right]=\frac{1}{n} \sum_{i=1}^{n} E\left[Y_{i}\right] \phi_{j}\left(x_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} r\left(x_{i}\right) \phi_{j}\left(x_{i}\right) \\
\sim \int r(x) \phi_{j}(x) d x=\beta_{j}
\end{gathered}
$$

11.3 Wavelets

- Suppose that a regression function $r(x)$ has a sharp jump but that $r(x)$ is otherwise very smooth. That is, $r(x)$ is spatially inhomogeneous.
- Doppler function $\sqrt{x(1-x)} \sin \left(\frac{2.1 \pi}{x+.05}\right)$

11.3 Wavelets

Wavelets are local orthogonal functions.

Harr wavelet.

- Harr father wavelet (or Harr scaling function)

$$
\phi(x)= \begin{cases}1 & \text { if } 0 \leq x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- Haar mother wavelet

$$
\psi(x)= \begin{cases}-1 & \text { if } 0 \leq x \leq 1 / 2 \\ 1 & \text { if } 1 / 2<x \leq 1\end{cases}
$$

- For any integers j and k define

$$
\psi_{j, k}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)
$$

- Let $W_{j}=\left\{\psi_{j k}, k=1,2, \ldots, 2^{j}-1\right\}$ be the set of rescaled and shifted mother wavelets at resolution j.

11.3 Wavelets

Theorem. The set of functions

$$
\left\{\phi, W_{0}, W_{1}, \ldots\right\}
$$

is an orthonormal basis for $L^{2}(0,1)$.
Corollary. For any $f \in L^{2}(0,1)$,

$$
f(x)=\alpha \phi(x)+\sum_{j}^{\infty} \sum_{k=0}^{2^{j}-1} \beta_{j, k} \psi_{j, k}(x)
$$

where $\alpha=\int_{0}^{1} f(x) \phi(x) d x, \beta_{j, k}=\int_{0}^{1} f(x) \psi_{j, k}(x) d x$.

- α is called scaling coefficient.
- $\beta_{j, k}$ are called detail coefficients.
- In a finite sum approximation of f using J different scales

$$
f(x)=\alpha \phi(x)+\sum_{j}^{J} \sum_{k=0}^{2^{j}-1} \beta_{j, k} \psi_{j, k}(x)
$$

J represents the resolution of the approximation.

11.3 Wavelets

Regression.

- Consider the regression model $Y_{i}=r\left(x_{i}\right)+\sigma e_{i}$ where $e \sim N(0,1)$ and $x_{i}=i / n$.
- For simplicity, assume that $n=2^{J}$ for some J.
- Smoothing with wavelets requires thresholding instead of truncation. That is, instead of choosing a smoothing parameter that determines the number of terms to keep, thresholding keeps coefficients that are sufficiently large.
- One example of thresholding is hard, universal thresholding.

11.3 Wavelets

Hard, universal thresholding.

1. Calculate

$$
\hat{\alpha}=\frac{1}{n} \sum_{i} \phi_{k}\left(x_{i}\right) Y_{i}, \quad \text { and } \quad D_{j, k}=\frac{1}{n} \sum_{k} \psi_{j, k}\left(x_{i}\right) Y_{i}
$$

for $0 \leq j \leq J-1$ where $J=\log _{2}(n)$.
2. Apply universal thresholding

$$
\hat{\beta}_{j, k}= \begin{cases}D_{j, k} & \text { if }\left|D_{j, k}\right|>\text { threshold value } \\ 0 & \text { otherwise }\end{cases}
$$

3. Set $\hat{r}(x)=\hat{\alpha} \phi(x)+\sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} \hat{b}_{j, k} \psi_{j, k}(x)$.

Homework

For $n=10,000$, set $x_{i}=i / n$ and $y_{i}=\operatorname{doppler}\left(x_{i}\right)+e_{i}$ where $e_{i} \sim N\left(0,0.05^{2}\right)$.

1. Use the trigonometric functions to estimate the regression function.
2. Use the Legendre polynomials to estimate the regression function.
3. Use the Harr wavelets to estimate the regression function.

For 1-3, try to use a small number of terms. You are okay to use any programming libraries (that is, you do not need to make your own code; just use standard libraries) but specify all parameters to get your estimates.

