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12.1 Brownian Motion

Definition. Brownian motion (or Wiener process) is a
stochastic process w(w, t),w € Q2,0 < t < 1, that satisfies the
following four axioms:
1. w(w,0) =0 for all w.
2. For each w, w(w, t) is a continuous function of t.
3. Foreach 0 <s <t w(w,t) — w(w,s) is a Gaussian variable
with mean zero and variance t — s.
4. w(w, t) has independent increments; i.e., if
0<t1 <tr<---<tythen w(w,t;) — w(w, ti_1) for
i=1,2,...,n are independent.
Recommended reading. Theory of the Brownian movement by A
Einstein.



12.1 Brownian Motion

Properties of Brownian Motion.

1. The correlation function of Brownian motion is
E[W(tl)W(tg)] = min(tl, tg).

2. The Brownian path w(w, t) for a given w is nowhere
differentiable with probability 1 with respect to t.



12.1 Brownian Motion

Properties of Brownian Motion.

1. The correlation function of Brownian motion is
E[W(tl)W(tg)] = min(tl, tg).
Idea of Proof. Assume t» > tq,

Elw(t))w(t2)] = E{w(tr) (w(t2 — t1) + w(t1))]

= E[w(t1) (w(t2) — w(t1)) + E[w(t1)w(t1)]
= E[W(tl)W(tl)] =t

2. The Brownian path w(w, t) for a given w is nowhere
differentiable with probability 1 with respect to t.



12.1 Brownian Motion

Properties of Brownian Motion.

1. The correlation function of Brownian motion is
E[W(tl)W(tg)] = min(tl, tg).
Idea of Proof. Assume t» > tq,

Elw(t))w(t2)] = E{w(tr) (w(t2 — t1) + w(t1))]

= E[w(t1) (w(t2) — w(t1)) + E[w(t1)w(t1)]
= E[W(tl)W(tl)] =t

2. The Brownian path w(w, t) for a given w is nowhere
differentiable with probability 1 with respect to t.
Idea of Proof. W(w’t+AAti_W(w’t) is Gaussian with mean zero
and variance (At)~L.




12.1 Brownian Motion

White Noise. Although the Brownian motion does not have a
derivative in the standard sense, it does have a derivative in a
distribution sense

v(w, t) =

d t
) e

where ft? v(w,s)ds = w(w, to) — w(w, t1). The derivative v(w, t)
is called white noise.



12.2 Heat Equation
We want to solve the heat equation

1
Ve = EVXX, v(x,0) = ¢(x),x € R, t > 0,

which is a parabolic partial differential equation (PDE).

» By Fourier transform,

1 Rl
v(x,t) = \/ﬂ/ e™ 9k, t)dk,

Vie(x, t) ke™ 0 (k, t)dk,

“ v L

Vi (X, 1) = \ﬁ/_ (ik)?e™ v (k, t)dk,

ve(x, t) e™9,0(k, t)dk,

vl



12.2 Heat Equation

P Inserting these terms into the heat equation, we have
0:0(k, t) = —fk2 (k, 1),

(k,0) = o(k).

» The solution to the above ODE is
0(k,t) = e 2Kt 3 (k)

» Thus, the solution v(x, t) is given by

_ i > /kx —5 71kx /
v(x,t)—\/ﬂ/ooe \/ﬂ/ d(x")dx' dk
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12.2 Heat Equation

> (cont'd)
/)2
o
( /N2
© eT
= / € = d(x + x")dx’
—x2 t
where G(x) = e\/ﬁ/: is the Green function of the heat
equation.

» As the Green function G(x) is a probability density of a
normal random variable w with mean zero and variance t,

v(x, t) = E[p(x + w(w, t))].



12.3 Heat Equation by Random Walks

We want to approximate the solution of the heat equation on a
grid.
» Discretize x and t into x; = ih, t/ = jk, i € Z,j € NU {0}
with t = nk.
» We want to find a discrete function V" that approximates
v(ih, nk) = v/
» In Numerical Analysis, we learn that the solution V" of the
following difference equation

]

k 2 h?

Vit v iV VL -2V

converges to v’ as h,k — 0 and \ := 1h—k2

1k <1 (thatis, the
difference scheme is stable and consistent).



12.3 Heat Equation by Random Walks

» Choose A =1/2, that is, k = h?. Then the difference
equation becomes
1
» By iterating backward in time and using the notation
V2 = ¢(ih), we have

1 1

-1
Vi *2V+1 “‘2\/,"11

1 —2 2 2 2
= Vi v V,"+2

Z Cojd((—n+2j + i)h)

Jj=0



12.3 Heat Equation by Random Walks
> Let ng,k=1,2,3,...,n be a random walk

[ h  probability 1/2,
=\ —h probability 1/2

> Crj = Pr(Xi—1m = (=n+2j)h).

» Using the Central limit theorem, >} 1 converges to a
Gaussian variable with mean 0 and variance nh® = nk = t as
n — oo.

» Thus,

n e—(x')2/2t
=P =(—n+2))h| ~ ————2h
r ;Wk (—n+2j) NozT

where x" = (—n+ 2j)h.

> Finally,
)2 /2t

(Ve / \/ﬁ S H(X)dX

as n — 0.



12.4 Wiener Measure

» We showed that the solution of the heat equation v(x, t) can
be written as

v(x,t) = E[o(x + w(w, t))]

where ¢(x) is the initial value.

> The expectation is on the sample space, the space of
Brownian motions. What is the probability with respect to
w(w, t)? How do we define a probability distribution on
w(w, t)?

» The difficulty is that the Brownian motion is in an
infinite-dimensional space.



12.4 Wiener Measure

>

>

>

We consider the space of continuous functions u(t) such that
u(0) = 0. This is our sample space Q.

Pick an instant in time, say t;, and associate with this instant
a window of values (a1, b1], where —oco < a1, by < 0.
Consider a subset of all continuous functions that pass
through this window and denote it by C; (called a cylinder
set).

For every instant and every window, we can define a
corresponding cylinder set, i.e., C; is the subset of all
continuous functions that pass through the windows (aj, b;| at
the instant t;.

Consider two cylinder sets, C; and (5. Then C; N G is the
set of functions that pass through both windows. Similarly,

C; U (G, is the set of functions that pass through either C; or
G.

This forms an algebra (closed under finite disjoint unions,
intersections, and complements).



12.4 Wiener Measure

» The probability measure of C; is defined as

by e—S%/Ztl
Pr(Cy) = dsi.
f( 1) /31 V2t 51

» There exists a o-algebra and a probability measure dW
(Wiener measure) that extends the probability on the cylinder
sets.

Example.

vlx,t) = Elo(x -+ w(w, )] = [ olx+ wlw, )aw

e—(x)?/2t
/ ¢x+x —dX



12.4 Wiener Measure
—u2/2
e

2 _ [® 2 _
Example. [w?(w,1)dW = [ u 7 =1
Example. Assume that we can extend Fubini's theorem, that is,
we can change the order of integrations. We want to find the
expected value of fol w?(w, s)ds for the Brownian motion w.

E[/Ol w2(w, s)ds] = /01 w2(w, s)dsdW

1 1 1
:/ ds/w2(w,s)dW:/ sds = =.
0 0 2



12.4 Wiener Measure

Example. Find the expected value of w?(w,1/2)w?(w, 1).

2_\2

/W2(W, 1/2)W2(w,1)dW:/C:)/ZX2(X+y)ze—x7T y

dxdy = 1.



12.5 Heat Equation with Potential

Now we consider the following heat equation with a potential U(x)

1
Ve = 5 Vi + U(x)v, v(x,0) = ¢(x).

> For \ = %:2 < 1 , the solution to the following difference
equation converges to the solution of the original equation (a
good exercise for numerical analysis)

Y RV BV 1V
Tk =5 = —+3 (Ui Vi + Ui Vi)

where U; = U(ih).




12.5 Heat Equation with Potential

» For A\ =1/2,

k
(Uig1 Vi1 + Ui V)

V,-nH = (V11— Vi) + >

1
2
1 n 1 n
= 5(1 + ka.|_1)\/,-+1 + 5(1 + kUi—l)V,',l-
» By induction, we have

1
vi= >y on (LHkUiy) - (kUi i) Vi o,
h==41, .. lp=+1

> Let ng, k=1,2,3,...,n be a random walk

[ h  probability 1/2,
= —h probability 1/2

> Pr(n = hh,....np = Ioh) = 3



12.5 Heat Equation with Potential
» A probabilistic interpretation of the solution V" is

V" = Epaths {Mm=1(1 + kU(ih +n1 + - - + 1m))

xPp(ih+m +---+mnn)}

» Let w(s) be the path connecting 7; linearly for 0 <s < t.
Then we have

Vi" = Eybroken line paths {Mo=1 (1 + kU(ih + W (sm)))

x@(ih+ w(t))}
where s, = mk.
> For k|U| < 1/2, (1 + kU) = exp(kU + €) where |¢| < Ck>.

> M7 (1+ kU(ih+ Ww(sm))) =
exp (k> m_1 U(ih+ W(sm)) + €'), where |¢/| < nCk? = Ctk.



12.5 Heat Equation with Potential

| 2

>

n F U(ih+(s))ds 1 ; =
V" = Eyborken line paths {efo (I (=))ds gy jh + W(t))} +
small terms.

As h and k tend to zero, the broken line paths ih + w(s) look
more and more like Brownian motion paths ih + w(s), so in
the limit,

FUGx+w d:
v(x, t) = E3|| Brownian motion paths {efo CetwloDds g (x + W(t))}

= [ dwels v oD ),

the Feynman-Kac formula!



12.5 Heat Equation with Potential

Feynman diagrams.. We introduce an ¢, a small parameter, in
front of the potential U. After expanding in a Taylor series of e,

t t ‘ 2
eJo UGx+w(s))ds _ l—i—e/ U(X+W(5))ds+%62 </ U(x + W(S))d5> +
0 0

> constant term To = [ dW¢(x + w(t))

=% %Z/thb )dz = [0 K(x — z,t)¢(z)dz with the
vacuum propagator K(z,s) = ﬁ —22/25

> e-order term Ty

T, — e/dW /Ot Ux + w(s))b(x + w(t))ds

= e/t dS/dWU(X + w(s))o(x + w(t)).
0



12.5 Heat Equation with Potential

» T, cont'd
t 0 0
T = 6/ ds/ dzl/ dzoK(z1—x,5)-U(z1)K(z2, t—s)p(z1+ 22
0 —o00 —00
» Similarly (straightforward but not easy), the ¢ term

t tr o] o) [ele}
T = 62/ dt2/ dtl/ d21/ dZQ/ .
0 0 —00 —00 —00

-K(Zl — X, tl)U(Zl)K(ZQ, tr — tl)U(Zl + 22)
'K(Z3, t— tg)(b(zl + 2+ 23).



