Winter 2021 Math 106
 Topics in Applied Mathematics
 Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)
Lecture 12: Brownian Motion

12.1 Brownian Motion

Definition. Brownian motion (or Wiener process) is a stochastic process $w(\omega, t), \omega \in \Omega, 0 \leq t \leq 1$, that satisfies the following four axioms:

1. $w(\omega, 0)=0$ for all ω.
2. For each $\omega, w(\omega, t)$ is a continuous function of t.
3. For each $0 \leq s \leq t, w(\omega, t)-w(\omega, s)$ is a Gaussian variable with mean zero and variance $t-s$.
4. $w(\omega, t)$ has independent increments; i.e., if
$0 \leq t_{1}<t_{2}<\cdots<t_{n}$ then $w\left(\omega, t_{i}\right)-w\left(\omega, t_{i-1}\right)$ for
$i=1,2, \ldots, n$ are independent.
Recommended reading. Theory of the Brownian movement by A Einstein.

12.1 Brownian Motion

Properties of Brownian Motion.

1. The correlation function of Brownian motion is $E\left[w\left(t_{1}\right) w\left(t_{2}\right)\right]=\min \left(t_{1}, t_{2}\right)$.
2. The Brownian path $w(\omega, t)$ for a given ω is nowhere differentiable with probability 1 with respect to t.

12.1 Brownian Motion

Properties of Brownian Motion.

1. The correlation function of Brownian motion is $E\left[w\left(t_{1}\right) w\left(t_{2}\right)\right]=\min \left(t_{1}, t_{2}\right)$. Idea of Proof. Assume $t_{2}>t_{1}$,

$$
\begin{gathered}
E\left[w\left(t_{1}\right) w\left(t_{2}\right)\right]=E\left[w\left(t_{1}\right)\left(w\left(t_{2}-t_{1}\right)+w\left(t_{1}\right)\right)\right] \\
=E\left[w\left(t_{1}\right)\left(w\left(t_{2}\right)-w\left(t_{1}\right)\right)+E\left[w\left(t_{1}\right) w\left(t_{1}\right)\right]\right. \\
=E\left[w\left(t_{1}\right) w\left(t_{1}\right)\right]=t_{1}
\end{gathered}
$$

2. The Brownian path $w(\omega, t)$ for a given ω is nowhere differentiable with probability 1 with respect to t.

12.1 Brownian Motion

Properties of Brownian Motion.

1. The correlation function of Brownian motion is $E\left[w\left(t_{1}\right) w\left(t_{2}\right)\right]=\min \left(t_{1}, t_{2}\right)$. Idea of Proof. Assume $t_{2}>t_{1}$,

$$
\begin{gathered}
E\left[w\left(t_{1}\right) w\left(t_{2}\right)\right]=E\left[w\left(t_{1}\right)\left(w\left(t_{2}-t_{1}\right)+w\left(t_{1}\right)\right)\right] \\
=E\left[w\left(t_{1}\right)\left(w\left(t_{2}\right)-w\left(t_{1}\right)\right)+E\left[w\left(t_{1}\right) w\left(t_{1}\right)\right]\right. \\
=E\left[w\left(t_{1}\right) w\left(t_{1}\right)\right]=t_{1}
\end{gathered}
$$

2. The Brownian path $w(\omega, t)$ for a given ω is nowhere differentiable with probability 1 with respect to t. Idea of Proof. $\frac{w(\omega, t+\Delta t)-w(\omega, t)}{\Delta t}$ is Gaussian with mean zero and variance $(\Delta t)^{-1}$.

12.1 Brownian Motion

White Noise. Although the Brownian motion does not have a derivative in the standard sense, it does have a derivative in a distribution sense

$$
v(\omega, t)=\frac{d w(\omega, t)}{d t}=w^{\prime}(\omega, t)
$$

where $\int_{t_{1}}^{t_{2}} v(\omega, s) d s=w\left(\omega, t_{2}\right)-w\left(\omega, t_{1}\right)$. The derivative $v(\omega, t)$ is called white noise.

12.2 Heat Equation

We want to solve the heat equation

$$
v_{t}=\frac{1}{2} v_{x x}, \quad v(x, 0)=\phi(x), x \in \mathbb{R}, t>0
$$

which is a parabolic partial differential equation (PDE).

- By Fourier transform,

$$
\begin{aligned}
v(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \hat{v}(k, t) d k \\
v_{x}(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} i k e^{i k x} \hat{v}(k, t) d k \\
v_{x x}(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(i k)^{2} e^{i k x} \hat{v}(k, t) d k \\
v_{t}(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \partial_{t} \hat{v}(k, t) d k,
\end{aligned}
$$

12.2 Heat Equation

- Inserting these terms into the heat equation, we have

$$
\begin{gathered}
\partial_{t} \hat{v}(k, t)=-\frac{1}{2} k^{2} \hat{v}(k, t), \\
\hat{v}(k, 0)=\hat{\phi}(k)
\end{gathered}
$$

- The solution to the above ODE is

$$
\hat{v}(k, t)=e^{-\frac{1}{2} k^{2} t} \hat{\phi}(k)
$$

- Thus, the solution $v(x, t)$ is given by

$$
\begin{aligned}
& v(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} e^{-\frac{1}{2} k^{2} t} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x^{\prime}} \phi\left(x^{\prime}\right) d x^{\prime} d k \\
& \quad=\int_{-\infty}^{\infty} \frac{e^{\frac{-\left(x-x^{\prime}\right)^{2}}{2 t}}}{\sqrt{2 \pi t}} \phi\left(x^{\prime}\right) \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}\left(k \sqrt{t}-i\left(\frac{x-x^{\prime}}{\sqrt{t}}\right)\right)^{2}}}{\sqrt{2 \pi}} d k \sqrt{t} d x^{\prime}
\end{aligned}
$$

12.2 Heat Equation

- (cont'd)

$$
\begin{gathered}
=\int_{-\infty}^{\infty} \frac{e^{-\frac{\left(x-x^{\prime}\right)^{2}}{2 t}}}{\sqrt{2 \pi t}} \phi\left(x^{\prime}\right) d x^{\prime} \\
=\int_{-\infty}^{\infty} \frac{e^{-\frac{\left(x^{\prime}\right)^{2}}{2 t}}}{\sqrt{2 \pi t}} \phi\left(x+x^{\prime}\right) d x^{\prime} \\
=G * \phi
\end{gathered}
$$

where $G(x)=\frac{e^{-x^{2} / 2 t}}{\sqrt{2 \pi t}}$ is the Green function of the heat equation.

- As the Green function $G(x)$ is a probability density of a normal random variable w with mean zero and variance t,

$$
v(x, t)=E[\phi(x+w(\omega, t))] .
$$

12.3 Heat Equation by Random Walks

We want to approximate the solution of the heat equation on a grid.

- Discretize x and t into $x_{i}=i h, t^{j}=j k, i \in \mathbb{Z}, j \in \mathbb{N} \cup\{0\}$ with $t=n k$.
- We want to find a discrete function V_{i}^{n} that approximates $v(i h, n k)=v_{i}^{n}$.
- In Numerical Analysis, we learn that the solution V_{i}^{n} of the following difference equation

$$
\frac{V_{i}^{n+1}-V_{i}^{n}}{k}=\frac{1}{2} \frac{V_{i+1}^{n}+V_{i-1}^{n}-2 V_{i}^{n}}{h^{2}}
$$

converges to v_{i}^{n} as $h, k \rightarrow 0$ and $\lambda:=\frac{1}{2} \frac{k}{h^{2}} \leq \frac{1}{2}$ (that is, the difference scheme is stable and consistent).

12.3 Heat Equation by Random Walks

- Choose $\lambda=1 / 2$, that is, $k=h^{2}$. Then the difference equation becomes

$$
V_{i}^{n+1}=\frac{1}{2}\left(V_{i+1}^{n}+V_{i-1}^{n}\right) .
$$

- By iterating backward in time and using the notation $V_{i}^{0}=\phi(i h)$, we have

$$
\begin{gathered}
V_{i}^{n}=\frac{1}{2} V_{i+1}^{n-1}+\frac{1}{2} V_{i-1}^{n-1} \\
=\frac{1}{4} V_{i-2}^{n-2}+\frac{2}{4} V_{i}^{n-2}+\frac{1}{4} V_{i+2}^{n-2} \\
\vdots \\
=
\end{gathered} \sum_{j=0}^{n} C_{n, j} \phi((-n+2 j+i) h)
$$

$$
\text { where } C_{n, j}=\frac{1}{2^{n}}\binom{n}{j}
$$

12.3 Heat Equation by Random Walks

- Let $\eta_{k}, k=1,2,3, \ldots, n$ be a random walk

$$
\eta_{k}= \begin{cases}h & \text { probability } 1 / 2 \\ -h & \text { probability } 1 / 2\end{cases}
$$

- $C_{n, j}=\operatorname{Pr}\left(\sum_{k=1}^{n} \eta_{k}=(-n+2 j) h\right)$.
- Using the Central limit theorem, $\sum_{k}^{n} \eta_{k}$ converges to a Gaussian variable with mean 0 and variance $n h^{2}=n k=t$ as $n \rightarrow \infty$.
- Thus,

$$
C_{n, j}=\operatorname{Pr}\left(\sum_{k=1}^{n} \eta_{k}=(-n+2 j) h\right) \sim \frac{e^{-\left(x^{\prime}\right)^{2} / 2 t}}{\sqrt{2 \pi t}} 2 h
$$

where $x^{\prime}=(-n+2 j) h$.

- Finally,

$$
V_{i}^{n} \rightarrow \int_{-\infty}^{\infty} \frac{e^{-\left(x-x^{\prime}\right)^{2} / 2 t}}{\sqrt{2 \pi t}} \phi\left(x^{\prime}\right) d x^{\prime}
$$

as $n \rightarrow \infty$.

12.4 Wiener Measure

- We showed that the solution of the heat equation $v(x, t)$ can be written as

$$
v(x, t)=E[\phi(x+w(\omega, t))]
$$

where $\phi(x)$ is the initial value.

- The expectation is on the sample space, the space of Brownian motions. What is the probability with respect to $w(\omega, t)$? How do we define a probability distribution on $w(\omega, t)$?
- The difficulty is that the Brownian motion is in an infinite-dimensional space.

12.4 Wiener Measure

- We consider the space of continuous functions $u(t)$ such that $u(0)=0$. This is our sample space Ω.
- Pick an instant in time, say t_{1}, and associate with this instant a window of values $\left(a_{1}, b_{1}\right.$, where $-\infty \leq a_{1}, b_{2} \leq \infty$.
- Consider a subset of all continuous functions that pass through this window and denote it by C_{1} (called a cylinder set).
- For every instant and every window, we can define a corresponding cylinder set, i.e., C_{i} is the subset of all continuous functions that pass through the windows $\left(a_{i}, b_{i}\right]$ at the instant t_{i}.
- Consider two cylinder sets, C_{1} and C_{2}. Then $C_{1} \cap C_{2}$ is the set of functions that pass through both windows. Similarly, $C_{1} \cup C_{2}$ is the set of functions that pass through either C_{1} or C_{2}.
- This forms an algebra (closed under finite disjoint unions, intersections, and complements).

12.4 Wiener Measure

- The probability measure of C_{1} is defined as

$$
\operatorname{Pr}\left(C_{1}\right)=\int_{a_{1}}^{b_{1}} \frac{e^{-s_{1}^{2} / 2 t_{1}}}{\sqrt{2 \pi t_{1}}} d s_{1}
$$

- There exists a σ-algebra and a probability measure $d W$ (Wiener measure) that extends the probability on the cylinder sets.
Example.

$$
\begin{gathered}
v(x, t)=E[\phi(x+w(\omega, t))]=\int \phi(x+w(\omega, t)) d W \\
=\int_{-\infty}^{\infty} \phi\left(x+x^{\prime}\right) \frac{e^{-\left(x^{\prime}\right)^{2} / 2 t}}{\sqrt{2 \pi t}} d x^{\prime}
\end{gathered}
$$

12.4 Wiener Measure

Example. $\int w^{2}(\omega, 1) d W=\int_{-\infty}^{\infty} u^{2} \frac{e^{-u^{2} / 2}}{\sqrt{2 \pi}}=1$
Example. Assume that we can extend Fubini's theorem, that is, we can change the order of integrations. We want to find the expected value of $\int_{0}^{1} w^{2}(\omega, s) d s$ for the Brownian motion w.

$$
\begin{aligned}
& E\left[\int_{0}^{1} w^{2}(\omega, s) d s\right]=\int_{0}^{1} w^{2}(\omega, s) d s d W \\
& =\int_{0}^{1} d s \int w^{2}(\omega, s) d W=\int_{0}^{1} s d s=\frac{1}{2}
\end{aligned}
$$

12.4 Wiener Measure

Example. Find the expected value of $w^{2}(\omega, 1 / 2) w^{2}(\omega, 1)$.

$$
\int w^{2}(\omega, 1 / 2) w^{2}(\omega, 1) d W=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{2}(x+y)^{2} \frac{e^{-x^{2}-y^{2}}}{\pi} d x d y=1
$$

12.5 Heat Equation with Potential

Now we consider the following heat equation with a potential $U(x)$

$$
v_{t}=\frac{1}{2} v_{x x}+U(x) v, \quad v(x, 0)=\phi(x) .
$$

- For $\lambda=\frac{1}{2} \frac{k}{h^{2}} \leq \frac{1}{2}$, the solution to the following difference equation converges to the solution of the original equation (a good exercise for numerical analysis)

$$
\frac{V_{i}^{n+1}-V_{i}^{n}}{k}=\frac{1}{2} \frac{V_{i-1}^{n}+V_{i+1}^{n}-2 V_{i}^{n}}{h^{2}}+\frac{1}{2}\left(U_{i-1} V_{i-1}^{n}+U_{i+1} V_{i+1}^{n}\right),
$$

where $U_{i}=U(i h)$.

12.5 Heat Equation with Potential

- For $\lambda=1 / 2$,

$$
\begin{aligned}
V_{i}^{n+1} & =\frac{1}{2}\left(V_{i-1}^{n}-V_{i+1}^{n}\right)+\frac{k}{2}\left(U_{i+1} V_{i+1}^{n}+U_{i-1} V_{i-1}^{n}\right) \\
& =\frac{1}{2}\left(1+k U_{i+1}\right) V_{i+1}^{n}+\frac{1}{2}\left(1+k U_{i-1}\right) V_{i-1}^{n} .
\end{aligned}
$$

- By induction, we have

$$
V_{i}^{n}=\sum_{l_{1}= \pm 1, \ldots, l_{n}= \pm 1} \frac{1}{2^{n}}\left(1+k U_{i+l_{1}}\right) \cdots\left(1+k U_{i+l_{1}+\cdots+l_{n}}\right) V_{i+l_{1}+\cdots+l_{n}}^{0}
$$

- Let $\eta_{k}, k=1,2,3, \ldots, n$ be a random walk

$$
\eta_{k}= \begin{cases}h & \text { probability } 1 / 2 \\ -h & \text { probability } 1 / 2\end{cases}
$$

$-\operatorname{Pr}\left(\eta_{1}=I_{1} h, \ldots, \eta_{n}=I_{n} h\right)=\frac{1}{2^{n}}$

12.5 Heat Equation with Potential

- A probabilistic interpretation of the solution V_{i}^{n} is

$$
\begin{aligned}
& V_{i}^{n}=E_{\forall p a t h s}\left\{\Pi_{m=1}^{n}\left(1+k U\left(i h+\eta_{1}+\cdots+\eta_{m}\right)\right)\right. \\
&\left.\times \phi\left(i h+\eta_{1}+\cdots+\eta_{n}\right)\right\}
\end{aligned}
$$

- Let $\tilde{w}(s)$ be the path connecting η_{i} linearly for $0 \leq s \leq t$. Then we have

$$
\begin{gathered}
V_{i}^{n}=E_{\forall \text { broken line paths }}\left\{\Pi_{m=1}^{n}\left(1+k U\left(i h+\tilde{w}\left(s_{m}\right)\right)\right)\right. \\
\times \phi(i h+\tilde{w}(t))\}
\end{gathered}
$$

where $s_{m}=m k$.

- For $k|U|<1 / 2,(1+k U)=\exp (k U+\epsilon)$ where $|\epsilon| \leq C k^{2}$.
- $\Pi_{m=1}^{n}\left(1+k U\left(i h+\tilde{w}\left(s_{m}\right)\right)\right)=$ $\exp \left(k \sum_{m=1}^{n} U\left(i h+\tilde{w}\left(s_{m}\right)\right)+\epsilon^{\prime}\right)$, where $\left|\epsilon^{\prime}\right| \leq n C k^{2}=C t k$.

12.5 Heat Equation with Potential

- $V_{i}^{n}=E_{\forall \text { borken line paths }}\left\{e^{\int_{0}^{t} U(i h+\tilde{w}(s)) d s} \phi(i h+\tilde{w}(t))\right\}+$ small terms.
- As h and k tend to zero, the broken line paths ih $+\tilde{w}(s)$ look more and more like Brownian motion paths ih $+w(s)$, so in the limit,
$v(x, t)=E_{\text {all Brownian motion paths }}\left\{e^{\int_{0}^{t} U(x+w(s)) d s} \phi(x+w(t))\right\}$

$$
=\int d W e^{\int_{0}^{t} U(x+w(s)) d s} \phi(x+w(t))
$$

the Feynman-Kac formula!

12.5 Heat Equation with Potential

Feynman diagrams.. We introduce an ϵ, a small parameter, in front of the potential U. After expanding in a Taylor series of ϵ,
$e^{\int_{0}^{t} \epsilon U(x+w(s)) d s}=1+\epsilon \int_{0}^{t} U(x+w(s)) d s+\frac{1}{2} \epsilon^{2}\left(\int_{0}^{t} U(x+w(s)) d s\right)^{2}+$.

- constant term $T_{0}=\int d W \phi(x+w(t))$
$=\int_{-\infty}^{\infty} \frac{e^{-(x-z)^{2} / 2 t}}{\sqrt{2 \pi t}} \phi(z) d z=\int_{-\infty}^{\infty} K(x-z, t) \phi(z) d z$ with the vacuum propagator $K(z, s)=\frac{1}{\sqrt{2 \pi s}} e^{-z^{2} / 2 s}$
- ϵ-order term T_{1}

$$
\begin{aligned}
& T_{1}=\epsilon \int d W \int_{0}^{t} U(x+w(s)) \phi(x+w(t)) d s \\
& =\epsilon \int_{0}^{t} d s \int d W U(x+w(s)) \phi(x+w(t))
\end{aligned}
$$

12.5 Heat Equation with Potential

- T_{1} cont'd

$$
T_{1}=\epsilon \int_{0}^{t} d s \int_{-\infty}^{\infty} d z_{1} \int_{-\infty}^{\infty} d z_{2} K\left(z_{1}-x, s\right) \cdot U\left(z_{1}\right) K\left(z_{2}, t-s\right) \phi\left(z_{1}+z_{2}\right)
$$

- Similarly (straightforward but not easy), the ϵ^{2} term

$$
\begin{gathered}
T_{2}=\epsilon^{2} \int_{0}^{t} d t_{2} \int_{0}^{t_{2}} d t_{1} \int_{-\infty}^{\infty} d z_{1} \int_{-\infty}^{\infty} d z_{2} \int_{-\infty}^{\infty} \\
\cdot K\left(z_{1}-x, t_{1}\right) U\left(z_{1}\right) K\left(z_{2}, t_{2}-t_{1}\right) U\left(z_{1}+z_{2}\right) \\
\cdot K\left(z_{3}, t-t_{2}\right) \phi\left(z_{1}+z_{2}+z_{3}\right)
\end{gathered}
$$

