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Lecture 12: Brownian Motion



12.1 Brownian Motion

Definition. Brownian motion (or Wiener process) is a
stochastic process w(ω, t), ω ∈ Ω, 0 ≤ t ≤ 1, that satisfies the
following four axioms:

1. w(ω, 0) = 0 for all ω.

2. For each ω, w(ω, t) is a continuous function of t.

3. For each 0 ≤ s ≤ t, w(ω, t)− w(ω, s) is a Gaussian variable
with mean zero and variance t − s.

4. w(ω, t) has independent increments; i.e., if
0 ≤ t1 < t2 < · · · < tn then w(ω, ti )− w(ω, ti−1) for
i = 1, 2, ..., n are independent.

Recommended reading. Theory of the Brownian movement by A
Einstein.



12.1 Brownian Motion

Properties of Brownian Motion.

1. The correlation function of Brownian motion is
E [w(t1)w(t2)] = min(t1, t2).

Idea of Proof. Assume t2 > t1,

E [w(t1)w(t2)] = E [w(t1) (w(t2 − t1) + w(t1))]

= E [w(t1) (w(t2)− w(t1)) + E [w(t1)w(t1)]

= E [w(t1)w(t1)] = t1

2. The Brownian path w(ω, t) for a given ω is nowhere
differentiable with probability 1 with respect to t.

Idea of Proof. w(ω,t+∆t)−w(ω,t)
∆t is Gaussian with mean zero

and variance (∆t)−1.
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12.1 Brownian Motion

White Noise. Although the Brownian motion does not have a
derivative in the standard sense, it does have a derivative in a
distribution sense

v(ω, t) =
dw(ω, t)

dt
= w ′(ω, t)

where
∫ t2

t1
v(ω, s)ds = w(ω, t2)− w(ω, t1). The derivative v(ω, t)

is called white noise.



12.2 Heat Equation

We want to solve the heat equation

vt =
1

2
vxx , v(x , 0) = φ(x), x ∈ R, t > 0,

which is a parabolic partial differential equation (PDE).

I By Fourier transform,

v(x , t) =
1√
2π

∫ ∞
−∞

e ikx v̂(k , t)dk,

vx(x , t) =
1√
2π

∫ ∞
−∞

ike ikx v̂(k , t)dk,

vxx(x , t) =
1√
2π

∫ ∞
−∞

(ik)2e ikx v̂(k, t)dk,

vt(x , t) =
1√
2π

∫ ∞
−∞

e ikx∂t v̂(k, t)dk,



12.2 Heat Equation

I Inserting these terms into the heat equation, we have

∂t v̂(k , t) = −1

2
k2v̂(k , t),

v̂(k , 0) = φ̂(k).

I The solution to the above ODE is

v̂(k , t) = e−
1
2
k2t φ̂(k)

I Thus, the solution v(x , t) is given by

v(x , t) =
1√
2π

∫ ∞
−∞

e ikxe−
1
2
k2t 1√

2π

∫ ∞
−∞

e−ikx
′
φ(x ′)dx ′dk

=

∫ ∞
−∞

e
−(x−x′)2

2t

√
2πt

φ(x ′)

∫ ∞
−∞

e
− 1

2

(
k
√
t−i( x−x′√

t
)
)2

√
2π

dk
√
tdx ′



12.2 Heat Equation

I (cont’d)

=

∫ ∞
−∞

e−
(x−x′)2

2t

√
2πt

φ(x ′)dx ′

=

∫ ∞
−∞

e−
(x′)2

2t

√
2πt

φ(x + x ′)dx ′

= G ∗ φ

where G (x) = e−x2/2t
√

2πt
is the Green function of the heat

equation.

I As the Green function G (x) is a probability density of a
normal random variable w with mean zero and variance t,

v(x , t) = E [φ(x + w(ω, t))].



12.3 Heat Equation by Random Walks

We want to approximate the solution of the heat equation on a
grid.

I Discretize x and t into xi = ih, t j = jk, i ∈ Z, j ∈ N ∪ {0}
with t = nk.

I We want to find a discrete function V n
i that approximates

v(ih, nk) = vni .

I In Numerical Analysis, we learn that the solution V n
i of the

following difference equation

V n+1
i − V n

i

k
=

1

2

V n
i+1 + V n

i−1 − 2V n
i

h2

converges to vni as h, k → 0 and λ := 1
2

k
h2 ≤ 1

2 (that is, the
difference scheme is stable and consistent).



12.3 Heat Equation by Random Walks

I Choose λ = 1/2, that is, k = h2. Then the difference
equation becomes

V n+1
i =

1

2

(
V n
i+1 + V n

i−1

)
.

I By iterating backward in time and using the notation
V 0
i = φ(ih), we have

V n
i =

1

2
V n−1
i+1 +

1

2
V n−1
i−1

=
1

4
V n−2
i−2 +

2

4
V n−2
i +

1

4
V n−2
i+2

...

=
n∑

j=0

Cn,jφ((−n + 2j + i)h)

where Cn,j = 1
2n

(
n
j

)
.



12.3 Heat Equation by Random Walks

I Let ηk , k = 1, 2, 3, ..., n be a random walk

ηk =

{
h probability 1/2,
−h probability 1/2

I Cn,j = Pr (
∑n

k=1 ηk = (−n + 2j)h) .
I Using the Central limit theorem,

∑n
k ηk converges to a

Gaussian variable with mean 0 and variance nh2 = nk = t as
n→∞.

I Thus,

Cn,j = Pr

(
n∑

k=1

ηk = (−n + 2j)h

)
∼ e−(x ′)2/2t

√
2πt

2h

where x ′ = (−n + 2j)h.
I Finally,

V n
i →

∫ ∞
−∞

e−(x−x ′)2/2t

√
2πt

φ(x ′)dx ′

as n→∞.



12.4 Wiener Measure

I We showed that the solution of the heat equation v(x , t) can
be written as

v(x , t) = E [φ(x + w(ω, t))]

where φ(x) is the initial value.

I The expectation is on the sample space, the space of
Brownian motions. What is the probability with respect to
w(ω, t)? How do we define a probability distribution on
w(ω, t)?

I The difficulty is that the Brownian motion is in an
infinite-dimensional space.



12.4 Wiener Measure

I We consider the space of continuous functions u(t) such that
u(0) = 0. This is our sample space Ω.

I Pick an instant in time, say t1, and associate with this instant
a window of values (a1, b1], where −∞ ≤ a1, b2 ≤ ∞.

I Consider a subset of all continuous functions that pass
through this window and denote it by C1 (called a cylinder
set).

I For every instant and every window, we can define a
corresponding cylinder set, i.e., Ci is the subset of all
continuous functions that pass through the windows (ai , bi ] at
the instant ti .

I Consider two cylinder sets, C1 and C2. Then C1 ∩ C2 is the
set of functions that pass through both windows. Similarly,
C1 ∪ C2 is the set of functions that pass through either C1 or
C2.

I This forms an algebra (closed under finite disjoint unions,
intersections, and complements).



12.4 Wiener Measure

I The probability measure of C1 is defined as

Pr(C1) =

∫ b1

a1

e−s
2
1/2t1

√
2πt1

ds1.

I There exists a σ-algebra and a probability measure dW
(Wiener measure) that extends the probability on the cylinder
sets.

Example.

v(x , t) = E [φ(x + w(ω, t))] =

∫
φ(x + w(ω, t))dW

=

∫ ∞
−∞

φ(x + x ′)
e−(x ′)2/2t

√
2πt

dx ′



12.4 Wiener Measure

Example.
∫
w2(ω, 1)dW =

∫∞
−∞ u2 e−u2/2

√
2π

= 1

Example. Assume that we can extend Fubini’s theorem, that is,
we can change the order of integrations. We want to find the
expected value of

∫ 1
0 w2(ω, s)ds for the Brownian motion w .

E [

∫ 1

0
w2(ω, s)ds] =

∫ 1

0
w2(ω, s)dsdW

=

∫ 1

0
ds

∫
w2(ω, s)dW =

∫ 1

0
sds =

1

2
.



12.4 Wiener Measure

Example. Find the expected value of w2(ω, 1/2)w2(ω, 1).∫
w2(ω, 1/2)w2(ω, 1)dW =

∫ ∞
−∞

∫ ∞
−∞

x2(x+y)2 e
−x2−y2

π
dxdy = 1.



12.5 Heat Equation with Potential

Now we consider the following heat equation with a potential U(x)

vt =
1

2
vxx + U(x)v , v(x , 0) = φ(x).

I For λ = 1
2

k
h2 ≤ 1

2 , the solution to the following difference
equation converges to the solution of the original equation (a
good exercise for numerical analysis)

V n+1
i − V n

i

k
=

1

2

V n
i−1 + V n

i+1 − 2V n
i

h2
+

1

2

(
Ui−1V

n
i−1 + Ui+1V

n
i+1

)
,

where Ui = U(ih).



12.5 Heat Equation with Potential

I For λ = 1/2,

V n+1
i =

1

2
(V n

i−1 − V n
i+1) +

k

2
(Ui+1V

n
i+1 + Ui−1V

n
i−1)

=
1

2
(1 + kUi+1)V n

i+1 +
1

2
(1 + kUi−1)V n

i−1.

I By induction, we have

V n
i =

∑
l1=±1,...,ln=±1

1

2n
(1+kUi+l1) · · · (1+kUi+l1+···+ln)V 0

i+l1+···+ln

I Let ηk , k = 1, 2, 3, ..., n be a random walk

ηk =

{
h probability 1/2,
−h probability 1/2

I Pr(η1 = l1h, ..., ηn = lnh) = 1
2n



12.5 Heat Equation with Potential

I A probabilistic interpretation of the solution V n
i is

V n
i = E∀paths {Π

n
m=1(1 + kU(ih + η1 + · · ·+ ηm))

×φ(ih + η1 + · · ·+ ηn)}

I Let w̃(s) be the path connecting ηi linearly for 0 ≤ s ≤ t.
Then we have

V n
i = E∀broken line paths {Π

n
m=1(1 + kU(ih + w̃(sm)))

×φ(ih + w̃(t))}

where sm = mk .

I For k |U| < 1/2, (1 + kU) = exp(kU + ε) where |ε| ≤ Ck2.

I Πn
m=1(1 + kU(ih + w̃(sm))) =

exp (k
∑n

m=1 U(ih + w̃(sm)) + ε′) , where |ε′| ≤ nCk2 = Ctk .



12.5 Heat Equation with Potential

I V n
i = E∀borken line paths

{
e
∫ t

0 U(ih+w̃(s))dsφ(ih + w̃(t))
}

+

small terms.

I As h and k tend to zero, the broken line paths ih + w̃(s) look
more and more like Brownian motion paths ih + w(s), so in
the limit,

v(x , t) = Eall Brownian motion paths

{
e
∫ t

0 U(x+w(s))dsφ(x + w(t))
}
.

=

∫
dWe

∫ t
0 U(x+w(s))dsφ(x + w(t)),

the Feynman-Kac formula!



12.5 Heat Equation with Potential

Feynman diagrams.. We introduce an ε, a small parameter, in
front of the potential U. After expanding in a Taylor series of ε,

e
∫ t

0 εU(x+w(s))ds = 1+ε

∫ t

0
U(x+w(s))ds+

1

2
ε2

(∫ t

0
U(x + w(s))ds

)2

+· · ·

I constant term T0 =
∫
dWφ(x + w(t))

=
∫∞
−∞

e−(x−z)2/2t
√

2πt
φ(z)dz =

∫∞
−∞ K (x − z , t)φ(z)dz with the

vacuum propagator K (z , s) = 1√
2πs

e−z
2/2s

I ε-order term T1

T1 = ε

∫
dW

∫ t

0
U(x + w(s))φ(x + w(t))ds

= ε

∫ t

0
ds

∫
dWU(x + w(s))φ(x + w(t)).



12.5 Heat Equation with Potential

I T1 cont’d

T1 = ε

∫ t

0
ds

∫ ∞
−∞

dz1

∫ ∞
−∞

dz2K (z1−x , s)·U(z1)K (z2, t−s)φ(z1+z2)

I Similarly (straightforward but not easy), the ε2 term

T2 = ε2

∫ t

0
dt2

∫ t2

0
dt1

∫ ∞
−∞

dz1

∫ ∞
−∞

dz2

∫ ∞
−∞
·

·K (z1 − x , t1)U(z1)K (z2, t2 − t1)U(z1 + z2)

·K (z3, t − t2)φ(z1 + z2 + z3).


