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Lecture 14: Stationary Stochastic Process



14.1 Stationary Stochastic Process

Definition. u(ω, t) ∈ C is a complex-valued stochastic process if
the real and imaginary parts of u are stochastic processes.
Let m(t) = E [u(ω, t)], i.e., the mean of u at time t.
Definition. R(t1, t2) = E [(u(ω, t1)−m(t1))u(ω, t2)−m(t2)]
Properties of R(t1, t2).

1. R(t1, t2) = R(t2, t1)

2. R(t1, t1) ≥ 0

3. |R(t1, t2)| ≤
√
R(t1, t2)R(t2, t1)

4. For all t1, t2, ..., tn and all z1, z2, ..., zn ∈ C,
n∑
i

n∑
j

R(ti , tj)zi z̄j ≥ 0

Proof of 4. For any choice of complex numbers zj ,

n∑
i

n∑
j

R(ti , tj)zi z̄j = E

∣∣∣∣∣∣
n∑
j

(u(ω, tj)−m(tj))zj

∣∣∣∣∣∣
2 ≥ 0



14.1 Stationary Stochastic Process

Definition. A process is stationary in the strict sense if for any
t1, t2, ..., tn and T ∈ R u(t1), u(t2), ..., u(tn) and
u(t1 + T ), u(t2 + T ), ..., u(tn + T ) have the same distribution.

I A stationary stochastic process in the strict sense has
moments that are independent of time.

I R(t1 − t2) = R(t1, t2)

Properties of R(t).

1. R(t) = R(−t)

2. R(0) ≥ 0

3. |R(t)| ≤ R(0)

4. For any t1, t2, ..., tn and z1, z2, ..., zn ∈ C∑
i

∑
j

R(ti − tj)zi z̄j ≥ 0



14.1 Stationary Stochastic Process

Definition. A stochastic process is stationary in the wild sense if it
has a constant mean and its covariance function depends only on
the different between the arguments, i.e.,

I m(t) = m

I R(t1, t2) = R(t1 − t2)

Example.

I Brownian motion is not stationary.

I White noise is stationary.

I A stationary Gaussian stochastic process in the wild sense is
stationary in the strict sense.

In this course, we consider stationary processes that are stationary
in the wile sense.



14.1 Stationary Stochastic Process

Pick ξ ∈ C to be a random variable and h(t) a nonrandom
function of time. We will consider

u(ω, t) = ξ(ω)h(t).

I E [u(ω, t)] = E [ξ]h(t) is constant if h(t) is constant or
E [ξ] = 0.

I Suppose E [ξ] = 0,

R(t1, t2) = E [ξh(t1) ¯ξh(t2)] = E [ξξ̄]h(t1) ¯h(t2)

must depends only on t1 − t2.

I If t1 = t2 = t, E [ξξ̄]h(t) ¯h(t) must be R(0), and thus h(t) ¯h(t)
is constant

h(t) = Ae iφ(t)



14.1 Stationary Stochastic Process

I Suppose A 6= 0,

R(t1 − t2) = |A|2E [ξξ̄]e iφ(t1)−iφ(t2)

I Using t2 = t, t1 − t2 = T ,

R(T ) = |A|2E [ξξ̄]e iφ(t + T )− φ(t)

I To satisfy R(T ) = R(−T ),

φ(t + T )− φ(t) = −φ(t − T ) + φ(t)

⇒ φ(t + T )− 2φ(t) + φ(t − T ) = 0

⇒ φ′′(t) = 0 for all t

Thus, φ(t) = λt + β.

Conclusion. u(ω, t) = ξ(ω)h(t) is stationary in the wild sense if
h(t) = Ce iλt and E [ξ] = 0. Its covariance function is
R(T ) = E [ξ2]e iλT .



14.2 Covariance and Spectrum

Consider a more general form u(ω, t) = ξ1(ω)e iλ1t + ξ(2ω)e iλ2t

with λ1 6= λ2.

I E [u] = E [ξ1]e iλ1t + E [ξ2]e iλ2t , which is independent of t if
E [ξ1] = E [ξ2] = 0.

I E [(ξ1(ω)e iλ1t + ξ(2ω)e iλ2t)(ξ1(ω)e iλ1t + ξ(2ω)e iλ2t)]
= E [|ξ1|2e iλ1T + |ξ2|2e iλ2T +ξ1ξ̄2e

iλ1t2−iλ2t2 + ξ̄1ξ2e
iλ1t1−iλ2t2 ]

which can be stationary only if E [ξ1ξ̄2] = 0.

I If E [ξ1ξ̄2] = 0,

R(T ) = E [|ξ1|2]e iλ1T + E [|ξ2|2]e iλ2T

A generalization of this says a process u =
∑

j ξje
iλj t is stationary

in the wild sense if E [ξj ξ̄j ] = 0 when j 6= k and E [ξj ] = 0.
In this case,

R(T ) =
∑
j

E [|ξj |2]e iλjT .



14.2 Covariance and Spectrum

Definition. G (k) =
∑

j |λj≤k E [|ξj |2], the sum of expected values
of the squares of the amplitudes with frequencies less than K .

Theorem. (Khinchin)

1. If R(T ) is the covariance function of a stochastic process
u(ω, t) stationary in the wild sense such that

lim
n→0

E [(u(t + h)− u(t))2] = 0,

then R(T ) =
∫
e ikTdG(k).

2. If a function R(T ) can be written as
∫
e ikTdG (k) for some

nondecreasing function G , then there exists a stochastic
process, stationary in the wild sense, satisfying the condition
in part (1) of the theorem, that has R(T ) as its covariance.
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14.2 Covariance and Spectrum

I If G (k) is differentiable, i.e., dG = g(k)dk, g(k) is called the
spectral density of the process.

I That is, R(T ) is a Fourier transform of the spectral density

I Also, g(k) = 1
2π

∫∞
−∞ e−ikTR(T )dT

Example. White noise R(T ) = δ(T ) and g(k) is constant.



14.3 Time Series

Time series u(ω, t), t ∈ N or Z, a stochastic process index by a
discrete set.
Assume that E [u(t)] = 0. Then R(T ) = E [u(t + T )u(t)] has the
following properties

1. R(0) ≥ 0

2. |R(T )| ≤ R(0)

3. R(T ) = R(−T )

4.
∑

ij R(i − j)zj z̄j ≥ 0.

I If u = ξ(ω)h(t), we have h(t) = Ae iφ(t).

I Using R(1) = R(−1), we obtain

φ(t+1)−φ(t) = −(φ(t−1)−φ(t)) mod 2π for t = 0,±1,±2, ...

I Set φ(0) = α and φ(0)− φ(−1) = λ. Using induction,
phi(t) = α + λt mod 2π and h(t) = Ae i(α+λt) = Ce iλt .

I g(k) = 1
2π

∑∞
−∞ R(T )e−iTk and R(T ) =

∫ π
−π e

iTkg(k)dk.



14.3 Time Series

Example. We want to estimate u(ω, t + m),m ≥ 0 given
u(ω, t − n), ..., u(ω, t − 1).

I Our estimate û(t + m) is the minimizer of

E [|u(t + m)− û(t + m)|2] (1)

I That is,

û(t + m) = E [u(t + m)|u(t − n), ..., u(t − 1)] (2)

Exercise. Derive (2) from (1).
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I Our estimate û(t + m) is the minimizer of

E [|u(t + m)− û(t + m)|2] (1)
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14.3 Time Series

For a basis {φi} in the space of functions of
u(t − n), u(t − n + 1), ..., u(t − 1),

û(t + m) = E [u(t + m)|u(t − n), ..., u(t − 1)]

≈
n∑
j

ajφj({u(t − n), u(t − n + 1), ..., u(t − 1)})

A natural choice for φi is {u(t − n), u(t − n + 1), ..., u(t − 1)}, i.e.,

û(t + m) =
n∑
j

aju(t − j)

a linear prediction for time series (or a autoregressive model).



14.3 Time Series

How to find aj . Find {aj} that minimizes
E [|u(t + m)−

∑
j aju(t − j)|2]

= E [(u(t + m)−
∑
j

aju(t − j)))(u(t + m)−
∑
k

aku(t − k))2)]

= E [u(t+m)u(t + m)−
∑
k

āku(t+m)u(t − k)−
∑
j

aju(t + m)u(t−j)

+
∑
j

∑
k

aj āku(t − j)u(t − k)]

= R(0)− 2Re(
∑
j

ājR(m + j)) +
∑
j

∑
k

aj ākR(k − j)

Now take a partial derivative
∂E [|u(t+m)−

∑
j aju(t−j)|2]

∂āj

= −R(m + j) +
∑
k

akR(j − k) = 0.

There are n-linear equations of n unknowns, which is solvable
(sure?)



Homework

1. Derive equation (2) from equation (1).

2. Numerically solve du = −udt + dw up to t = 100. u(0) = 10
and use a time step k = 0.01. Use seed(1) in your code. Plot
the covariance function of your solution.

3. Repeat 2 with u(0) = 0. Compare with problem 2. Discuss
the results.

4. Repeat 2 with u(0) = 0 and k = 1. Compare with problem 3.
Discuss the results.



Homework

5 Numerically solve the following deterministic 40-dimensional
ODE with a periodic boundary condition

dui
dt

= (ui+1 − ui−2)ui−1 − ui + F , i = 1, ...,N = 40

Use a time step k = 0.1 and F = 8. Initialize u using a
Gaussian distribution with mean 0 and variance 1. Solve up to
t = 1000. Using the solution from t = 500 to t = 1000,

(a) plot the distribution of u1 and u20. Calculate the relative
entropy using the distribution of u1 as truth.

(b) plot the covariance function of u20.
(c) plot the absolute values of the Fourier transform of the

covariance function of u20.

6 Repeat problem 5 with F = 6



Homework

7 Download the stock price data of Google from the course
webpage (GOOG.csv)

(a) Calculate the covariance function using data up to Dec 31,
2019.

(b) Use the covariance function to make predictions after Dec 31,
2019.

(c) Repeat the question using data from Jan 1, 2019 to Dec 31,
2019.

(d) What else can you try to improve your prediction performance?
Discuss your results using the mathematical assumptions we
had.


