The " $n-1$ "

April 21, 2003

We will attempt to understand the $n-1$ in the denominator of the sample variance. The idea will be to try and understand how to estimate the mean and variance of a random variable X from a sample. Namely we assume we don't know $E(X)$ or $V(X)$ and wish to estimate them by performing n independent samples of the random variable X. We will denote each of these trials as X_{i}.

First we will attempt to estimate the mean from our n independent trials. We of course hope that

$$
\bar{X}=\frac{\sum X_{i}}{n}
$$

does the job, since this is our formula from the text for the sample mean! Notice, from the 1FMP

$$
E\left(\frac{\sum X_{i}}{n}\right)=\frac{n}{n} E(X)=E(X)
$$

and from the 2FMP

$$
V\left(\frac{\sum X_{i}}{n}\right)=\frac{n}{n^{2}} V(X)
$$

In other words,

$$
S d(X)=\frac{S d(X)}{\sqrt{n}}
$$

If we accept the idea that "the chance that we are MANY standard deviation from the mean is small", then we are forced to conclude that for large n that \bar{X} is near the expected value with high probability.

The next question is how to we estimate the $V(X)$ from our n independent samples. We might hope that

$$
w^{2}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n}
$$

would do the job, since we are trying to compute the expected value $E((X-$ $E(X))^{2}$) and we just learned that \bar{X} estimates $E(X)$. Well for this to work we would need that $E\left(w^{2}\right)$ is in fact equal to $V(X)$. Let's perform the computation.

$$
\begin{align*}
E\left(w^{2}\right) & =E\left(\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n}\right) \tag{1}\\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(\left(X_{i}-\bar{X}\right)^{2}\right) \tag{2}
\end{align*}
$$

Where going from (1) to (2) requires using the 1FMP. Now we let $Y_{i}=$ $X_{i}-E(X)$. We like these Y_{i} since $X_{i}-\bar{X}=Y_{i}-\bar{Y}$ with Y_{i} itself satisfying that $E\left(Y_{i}\right)=0$. We now plug in the Y_{i}, "foil", and find

$$
\begin{align*}
E\left(w^{2}\right) & =\frac{1}{n} \sum_{i=1}^{n} E\left(\left(Y_{i}-\bar{Y}\right)^{2}\right) \tag{3}\\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(Y_{i}^{2}-2 Y_{i} \bar{Y}+\bar{Y}^{2}\right) \tag{4}
\end{align*}
$$

At this point we recall that $\bar{Y}=\frac{\sum Y_{i}}{n}$ and plug this in to find

$$
E\left(w^{2}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(\left(1-\frac{2}{n}\right) Y_{i}^{2}+\frac{1}{n^{2}} \sum_{j=1}^{n} Y_{j}^{2}+\left(\frac{2}{n^{2}}-\frac{2}{n}\right) \sum_{i \neq j} Y_{i} Y_{j}\right)
$$

By the 3FMP and the fact that $E\left(Y_{i}\right)=0$, when $i \neq j$ we have that $E\left(Y_{i} Y_{j}\right)=E\left(Y_{i}\right) E\left(Y_{j}\right)=0$. Hence, upon utilizing the 1FMP to bring the expect value through the above sum, we find that the last term in this sum disappears. We are left with the following.

$$
\begin{align*}
E\left(w^{2}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(1-\frac{2}{n}+\frac{n}{n^{2}}\right) E\left(Y^{2}\right) \tag{5}\\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1-\frac{1}{n}\right) E\left(Y^{2}\right) \tag{6}\\
& =\frac{n-1}{n} \sum_{i=1}^{n} E\left((X-E(X))^{2}\right) \tag{7}\\
& =\frac{n-1}{n} \sum_{i=1}^{n} V(X) \tag{8}
\end{align*}
$$

Hence to get the correct expect value we need to use

$$
\sigma^{2}=\frac{n}{n-1} w^{2}
$$

which, from this computation, indeed satisfies $E\left(\sigma^{2}\right)=V(X)$. Hence σ^{2} is the formula needed to estimate the variance of X from a sample, and indeed

$$
\sigma^{2}=\frac{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

is the formula stated in the text for the sample variance.
We are left wondering why did our initial guess failed to work? Very simply we need to use \bar{x} in the formula for w^{2}, and \bar{x} is itself only an estimate for $E(X)$. Notice, if we happen to KNOW $\mu=E(X)$, then indeed we could indeed use

$$
w^{2}=\frac{\sum\left(X_{i}-\mu\right)^{2}}{n},
$$

to estimate $V(X)$. Occasionally, by symmetry, we will know that $\mu=0$. In this case, we can (and should!) estimate the variance with w^{2}. USUALLY, however, we do not know μ, and hence must use the $n-1$.

Comment: On a practical level, it should be noted that $\frac{1}{n}$ and $\frac{1}{n-1}$ differ by a very small amount when n is large. For example, when $n \geq 20$ we find that

$$
\frac{1}{n-1}-\frac{1}{n} \leq \frac{1}{19}-\frac{1}{20}<\frac{1}{365},
$$

and since we are willing to say that a year has 365 days, this difference should be considered for most practical purposes as pretty darn little!

