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We will attempt to understand the n−1 in the denominator of the sample
variance. The idea will be to try and understand how to estimate the mean
and variance of a random variable X from a sample. Namely we assume
we don’t know E(X) or V (X) and wish to estimate them by performing
n independent samples of the random variable X. We will denote each of
these trials as Xi.

First we will attempt to estimate the mean from our n independent trials.
We of course hope that

X̄ =
∑

Xi

n
,

does the job, since this is our formula from the text for the sample mean!
Notice, from the 1FMP

E

(∑
Xi

n

)
=

n

n
E(X) = E(X)

and from the 2FMP
V

(∑
Xi

n

)
=

n

n2
V (X)

In other words,

Sd(X) =
Sd(X)√

n
.

If we accept the idea that “the chance that we are MANY standard deviation
from the mean is small”, then we are forced to conclude that for large n that
X̄ is near the expected value with high probability.

The next question is how to we estimate the V (X) from our n indepen-
dent samples. We might hope that

w2 =
∑

(Xi − X̄)2

n

1



would do the job, since we are trying to compute the expected value E((X−
E(X))2) and we just learned that X̄ estimates E(X). Well for this to work
we would need that E(w2) is in fact equal to V (X). Let’s perform the
computation.

E(w2) = E

(∑
(Xi − X̄)2

n

)
(1)

=
1
n

n∑
i=1

E
(
(Xi − X̄)2

)
(2)

Where going from (1) to (2) requires using the 1FMP. Now we let Yi =
Xi−E(X). We like these Yi since Xi− X̄ = Yi− Ȳ with Yi itself satisfying
that E(Yi) = 0. We now plug in the Yi, “foil”, and find

E(w2) =
1
n

n∑
i=1

E
(
(Yi − Ȳ )2

)
(3)

=
1
n

n∑
i=1

E
(
Y 2

i − 2YiȲ + Ȳ 2
)

. (4)

At this point we recall that Ȳ =
∑

Yi

n and plug this in to find

E(w2) =
1
n

n∑
i=1

E

(1− 2
n

)
Y 2

i +
1
n2

n∑
j=1

Y 2
j +

(
2
n2
− 2

n

)∑
i6=j

YiYj

 .

By the 3FMP and the fact that E(Yi) = 0, when i 6= j we have that
E(YiYj) = E(Yi)E(Yj) = 0. Hence, upon utilizing the 1FMP to bring the
expect value through the above sum, we find that the last term in this sum
disappears. We are left with the following.

E(w2) =
1
n

n∑
i=1

(
1− 2

n
+

n

n2

)
E(Y 2) (5)

=
1
n

n∑
i=1

(
1− 1

n

)
E(Y 2) (6)

=
n− 1

n

n∑
i=1

E((X − E(X))2) (7)

=
n− 1

n

n∑
i=1

V (X) (8)
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Hence to get the correct expect value we need to use

σ2 =
n

n− 1
w2

which, from this computation, indeed satisfies E(σ2) = V (X). Hence σ2 is
the formula needed to estimate the variance of X from a sample, and indeed

σ2 =
∑

i(Xi − X̄)2

n− 1
,

is the formula stated in the text for the sample variance.
We are left wondering why did our initial guess failed to work? Very

simply we need to use x̄ in the formula for w2, and x̄ is itself only an
estimate for E(X). Notice, if we happen to KNOW µ = E(X), then indeed
we could indeed use

w2 =
∑

(Xi − µ)2

n
,

to estimate V (X). Occasionally , by symmetry, we will know that µ = 0. In
this case, we can (and should!) estimate the variance with w2. USUALLY,
however, we do not know µ, and hence must use the n− 1.

Comment: On a practical level, it should be noted that 1
n and 1

n−1
differ by a very small amount when n is large. For example, when n ≥ 20
we find that

1
n− 1

− 1
n
≤ 1

19
− 1

20
<

1
365

,

and since we are willing to say that a year has 365 days, this difference
should be considered for most practical purposes as pretty darn little!
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