Data to be studied or compared	Types (and number) of Variables	Example of Hypotheses (Null and Alternative)	Test Statistic (Z- score, T-score etc and formula)	Large Sample			Small Sample		
				Type of Test	Associated Distribution and parameters	Necessary Conditions	Type of Test	Associated Distribution and parameters	Necessary Conditions
Mean Value	1 numerical variable	$H_0: \mu = 100$ $H_A: \mu \neq 100$	$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$	Z-test for a mean	Normal Distribution	 n>30 Independent Observations No strong Skew 	T-test for a mean	T-distribution parameter: degrees of freedom (n-1)	 Independent Observations Nearly Normal distribution
Difference of Means (paired data)	2 numerical variables (from each observation)	$H_0: \mu_{diff} = 0$ $H_A: \mu_{diff} \neq 0$	$Z = \frac{\overline{x_{diff}} - 0}{\sigma_{diff} / \sqrt{n}}$	Z -test for a paired difference of means	Normal Distribution	 n>30 Independent Observations No strong Skew 	T-test for a paired difference of means	T-distribution parameter: degrees of freedom (n-1)	 Independent Observations Nearly Normal distribution
Difference of Means (unpaired data)	1 numerical variable, one 2 level categorical variable	$H_{0}: \mu_{1} - \mu_{2} = 0$ $H_{A}: \mu_{1} - \mu_{2} \neq 0$	$Z = \frac{\overline{x_1} - \overline{x_2} - 0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	Z -test for difference of means	Normal Distribution	 n₁,n₂>30 Independent Observations No strong Skew 	T-test for difference of means	T-distribution parameter: degrees of freedom $min(n_1-1,n_2-1)$	 Independent Observations Nearly Normal distribution
Comparison of Multiple Means	1 numerical variable, one categorical variable with multiple levels	H₀: All means equalH_A: At least one mean different from others	$F = \frac{MSG}{MSE}$ (Not on exam)	ANOVA	F-distribution parameters: degrees of Freedom Group and degrees of freedom error	 Independent Observations Nearly Normal distributions Constant Variance 			
Proportion (counts) of data in one of two categories.	1 categorical variable (2 levels)	$H_0: \hat{p} = 0.4$ $H_A: \hat{p} \neq 0.4$	$Z = \frac{p_{O} - p_{E}}{\sqrt{\frac{p_{E}(1 - p_{E})}{n}}}$ $p_{E} = \text{Expected}$ Proportion	Z-test for a proportion	Normal Distribution	 Independent Observations Expected counts at least 10 	Simulation	Simulated Distribution	• Independent Observations

Difference of two proportions	2 categorical variables (both 2 level)	$H_0: \hat{p} = 0.4$ $H_A: \hat{p}_1 - \hat{p}_2 \neq 0$	$Z = \frac{(p_1 - p_2) - 0}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n_1} + \frac{\hat{p}(1 - \hat{p})}{n_2}}}$ (\hat{p} = pooled proportion, use when testing equality of proportions, otherwise use p_1, p_2 respectively) Z-Test for a difference of proportions	Normal Distribution	 Independent observations Expected counts at least 10 	Simulation	Simulated Distribution	• Independent Observations
Counts of data in more than two categories	1 categorical variable (multiple levels)	H ₀ : Counts match expected distribution H _A : Counts differ from expected distribution	$\chi = \sum \frac{(obs_i - exp_i)^2}{exp_i}$ Observed and expected counts from distribution. Chi Squared test for goodness of fit.	Chi Squared Distribution Parameter: Degrees of Freedom (# of bins-#of constraints -1)	 Independent observations Expected counts at least At least 2 degrees of Freedom 	Simulation	Simulated Distribution	• Independent Observations
Relationship between counts of two different variables	2 categorical variables, at least one of which is multiple levels	 H₀: Categorical variables are independent of each other H_A: Categorical variables are dependent, counts vary between rows/columns 	$\chi = \sum \frac{(obs_i - exp_i)^2}{exp_i} \text{Where}$ the expected value of an entry is $\frac{(row total) \times (column total)}{table total}$ Chi squared test for independence	Chi Squared Distribution Parameter: Degrees of Freedom: (#rows -1) *(#cols-1)	 Independent observations Expected counts at least 5 At least 2 degrees of Freedom 	Simulation	Simulated Distribution	• Independent Observations
Correlation between two numerical values	2 Numerical Variables	$H_0: \beta_1 = 0$ $H_0: \beta_1 \neq 0$	$\beta_{1} = R \frac{s_{y}}{s_{x}}$ $R = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum (x_{i} - \overline{x})^{2} \sum (y_{i} - \overline{y})^{2}}}$ $\beta_{0} = \overline{y} - \beta_{1} \overline{x}$ T-score from computer output	T-test for linear regression	 Linear Data Nearly Normal Residuals Constant Variablilty 			