Data to be studied or compared	Types (and number) of Variables	Example of Hypotheses (Null and Alternative)	Test Statistic (Zscore, T-score etc and formula)	Large Sample			Small Sample		
				Type of Test	Associated Distribution and parameters	Necessary Conditions	Type of Test	Associated Distribution and parameters	Necessary Conditions
Mean Value	1 numerical variable	$\begin{aligned} & H_{0}: \mu=100 \\ & H_{A}: \mu \neq 100 \end{aligned}$	$Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$	Z-test for a mean	Normal Distribution	- $\mathrm{n}>30$ - Independent Observations - No strong Skew	T-test for a mean	T-distribution parameter: degrees of freedom ($\mathrm{n}-1$)	- Independent Observations - Nearly Normal distribution
Difference of Means (paired data)	2 numerical variables (from each observation)	$\begin{aligned} & H_{0}: \mu_{\text {diff }}=0 \\ & H_{A}: \mu_{\text {diff }} \neq 0 \end{aligned}$	$Z=\frac{\overline{x_{\text {diff }}}-0}{\sigma_{\text {diff }} / \sqrt{n}}$	Z -test for a paired difference of means	Normal Distribution	- $\mathrm{n}>30$ - Independent Observations - No strong Skew	T-test for a paired difference of means	T-distribution parameter: degrees of freedom ($\mathrm{n}-1$)	- Independent Observations - Nearly Normal distribution
Difference of Means (unpaired data)	1 numerical variable, one 2 level categorical variable	$\begin{aligned} & H_{0}: \mu_{1}-\mu_{2}=0 \\ & H_{A}: \mu_{1}-\mu_{2} \neq 0 \end{aligned}$	$Z=\frac{\overline{X_{1}}-\overline{X_{2}}-0}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$	Z -test for difference of means	Normal Distribution	${ }^{-1} \mathrm{n}_{1}, \mathrm{n}_{2}>30$ - Independent Observations - No strong Skew	T-test for difference of means	T-distribution parameter: degrees of freedom $\min \left(n_{1}-1, n_{2}-1\right)$	- Independent Observations - Nearly Normal distribution
Comparison of Multiple Means	1 numerical variable, one categorical variable with multiple levels	H_{0} : All means equal H_{A} : At least one mean different from others	$F=\frac{M S G}{M S E}$ (Not on exam)	ANOVA	F-distribution parameters: degrees of Freedom Group and degrees of freedom error	- Independent Observations - Nearly Normal distributions - Constant Variance			
Proportion (counts) of data in one of two categories.	1 categorical variable (2 levels)	$\begin{aligned} & H_{0}: \hat{p}=0.4 \\ & H_{A}: \hat{p} \neq 0.4 \end{aligned}$	$\begin{aligned} & Z=\frac{p_{O}-p_{E}}{\sqrt{\frac{p_{E}\left(1-p_{E}\right)}{n}}} \\ & \begin{array}{l} \mathrm{p}_{\mathrm{E}}=\text { Expected } \\ \text { Proportion } \end{array} \end{aligned}$	Z-test for a proportion	Normal Distribution	- Independent Observations - Expected counts at least 10	Simulation	Simulated Distribution	- Independent Observations

Difference of two proportions	2 categorical variables (both 2 level)	$\begin{aligned} & H_{0}: \hat{p}=0.4 \\ & H_{A}: \hat{p}_{1}-\hat{p}_{2} \neq 0 \end{aligned}$	$Z=\frac{\left(p_{1}-p_{2}\right)-0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}}$ ($\hat{p}=$ pooled proportion, use when testing equality of proportions, otherwise use $\mathrm{p}_{1,}, \mathrm{p}_{2}$ respectively) Z-Test for a difference of proportions	Normal Distribution	-Independent observations - Expected counts at least 10	Simulation	Simulated Distribution	- Independent Observations
Counts of data in more than two categories	1 categorical variable (multiple levels)	H_{0} : Counts match expected distribution H_{A} : Counts differ from expected distribution	$\chi=\sum \frac{\left(o b s_{i}-\exp _{i}\right)^{2}}{\exp _{i}}$ Observed and expected counts from distribution. Chi Squared test for goodness of fit.	Chi Squared Distribution Parameter: Degrees of Freedom (\# of bins-\#of constraints -1)	-Independent observations - Expected counts at least 5 - At least 2 degrees of Freedom	Simulation	Simulated Distribution	- Independent Observations
Relationship between counts of two different variables	2 categorical variables, at least one of which is multiple levels	H_{0} : Categorical variables are independent of each other H_{A} : Categorical variables are dependent, counts vary between rows/columns	$\chi=\sum \frac{\left(o b s_{i}-\exp _{i}\right)^{2}}{\exp _{i}} \text { Where }$ the expected value of an entry is $\underline{(\text { row total }) \times(\text { column total })}$ table total Chi squared test for independence	Chi Squared Distribution Parameter: Degrees of Freedom: (\#rows -1) *(\#cols-1)	-Independent observations - Expected counts at least 5 - At least 2 degrees of Freedom	Simulation	Simulated Distribution	- Independent Observations
Correlation between two numerical values	2 Numerical Variables	$\begin{aligned} & H_{0}: \beta_{1}=0 \\ & H_{0}: \beta_{1} \neq 0 \end{aligned}$	$\begin{aligned} & \beta_{1}=R \frac{S_{y}}{S_{x}} \\ & R=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}} \\ & \beta_{0}=\bar{y}-\beta_{1} \bar{x} \end{aligned}$ T-score from computer output	T-test for linear regression	-Linear Data -Nearly Normal Residuals - Constant Variablilty			

