Math 10 - Spring 2013

Homework 3

Due April 15, 2013
Everybody believes in the normal approximation, the experimenters because they think it is a mathematical theorem, the mathematicians because they think it is an experimental fact.-Gabriel Lippman

Turn in: Exercises 3.2, 3.7, 3.10, 3.20, 3.24, 3.25, 3.28, 3.31 and 3.46 from the end of chapter 3 in the texbook and problems 10 and 11 below.
10. The width of a normal distribution is usually characterized by the parameter σ, the standard deviation. An alternative parameter with a simple geometric interpretation is the full width at half maximum, or FWHM. This parameter is the distance between the two points x where $N(\mu, \sigma)$ is half of its maximum value, as in the figure below. Using the equation for the normal distribution with $\mu=0$,

$$
N(0, \sigma, x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-x^{2}}{2 \sigma^{2}}}
$$

Show that

$$
\mathrm{FWHM}=2 \sigma \sqrt{2 \ln 2}=2.35 \sigma .
$$

Note: Sometimes the half width at half maximum, or HWHM, which is half of the FWHM is also used. So HWHM $=1.17 \sigma$, or very roughly HWHM $\approx \sigma$.

11. The normal approximation to the binomial distribution is excellent for large n, and surprisingly good for n small, especially if p is close to $1 / 2$. To illustrate this, compute the probability of observing 2 or 3 successes in 4 trials if $p=1 / 2$ both exactly and using the normal approximation. Remember the tip on the bottom of page 143!

