MATH 10

INTRODUCTORY STATISTICS

Ramesh Yapalparvi

Week 3

- Chapter 5 - Probability
- Chapter 7 - Normal Distribution
- Chapter 8 - Advanced Graphs
- Chapter 9 - Sampling Distributions \leftarrow today's lecture
Sampling distributions of the mean and p. Difference between means. Central Limit Theorem.

Chapter 9, Section 2 - Introduction

- Inferential statistics.
- Have population, and a variable of interest, X.
- Take a simple random sample, calculate estimators for certain aspects of the population distribution of X.
- E.g. sample mean = estimator for population mean.
- E.g. estimator of the sample variance.
- We will now quantify how "good" these estimators are.

Chapter 9, Section 6 - Sampling Distribution of the Mean

- The sample mean, of a simple random sample A with size n, is a random variable.
- If you collect another simple random sample B with size n, it is likely to have a different sample mean.
- If X is a random variable that represents the mean of a sample of size n, then X has a distribution.
- The distribution of X is the sampling distribution of the mean (of a sample of size n).
- This distribution has mean $\mu_{M}=\mu$, where μ is the population mean.
- This distribution has variance $\sigma_{M}^{2}=\frac{\sigma^{2}}{n}$, where σ^{2} is the population variance.

Chapter 9, Section 6 - Sampling Distribution of the Mean

- Sampling Distribution of the Mean has,

$$
\mu_{M}=\mu \quad \sigma_{M}^{2}=\frac{\sigma^{2}}{n}
$$

- Standard error, $\sigma_{M}=\frac{\sigma}{\sqrt{n}}$.

- Central Limit Theorem!!! ه(ג) $\boldsymbol{\otimes}$

If the population has finite mean μ, and finite non-zero variance σ^{2}, then the sampling distribution of the mean becomes better approximated by a normal distribution $\mathrm{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$, as sample size n increases.

Chapter 9, Section 6 Sampling Distribution of the Mean

Population

Distribution of Sample Mean, $\mathrm{N}=5$

Distribution of Sample Mean, $\mathrm{N}=25$

Chapter 9, Section 7 - Difference Between Means

- Finally, we can use statistics to compare two populations.
- Suppose you have two simple random samples with size n_{1} and n_{2}.
- Samples from population 1 and 2 respectively.
- Calculate their sample means M_{1} and M_{2}.
- The difference has a sampling distribution with mean $\mu_{M_{1}-M_{2}}=\mu_{1}-\mu_{2}$.

Chapter 9, Section 7 - Difference Between Means

- The difference has a sampling distribution with mean $\mu_{M_{1}-M_{2}}=\mu_{1}-\mu_{2}$.
- And variance $\sigma_{M_{1}-M_{2}}^{2}=\sigma_{M_{1}}^{2}+\sigma_{M_{1}}^{2}$.
- $\sigma_{M_{i}}^{2}=\frac{\sigma^{2}}{n_{i}}$, which is variance of the sampling distribution of M_{i}.
- Since the sample means are independent (as random variables), the variance sum law was used to derive the variance.
- $\sigma_{M_{1}-M_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}$

Chapter 9, Section 7 - Difference Between Means

- The difference has a sampling distribution with mean $\mu_{M_{1}-M_{2}}=\mu_{1}-\mu_{2}$.
- And variance $\sigma_{M_{1}-M_{2}}^{2}=\sigma_{M_{1}}^{2}+\sigma_{M_{1}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}$.
- Standard error $\sigma_{M_{1}-M_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$.
- This becomes much easier if the sample sizes and population variances are equal.

Public Service Announcement

- We are skipping "Chapter 9, Section 8, Sampling Distribution of r".
- This chapter is about the sampling distribution of the correlation coefficient.
- Not usually taught at Math 10 level.
- So we're nuking it from orbit (it's the only way to be sure).

Chapter 9, Section 9 - Sampling Distribution of p

- Population with N individuals. A proportion P of them are of type A, and the rest are of type B.
- E.g. Type A = those who voted for candidate A , and type $\mathrm{B}=$ those who voted for candidate B.
- Take a simple random sample of size n.
- You can see this sample as an experiment with n trials and probability of "success" P.

Chapter 9, Section 9-Sampling Distribution of p

- Take a simple random sample of size n.
- You can see this sample as an experiment with n trials and probability of "success" P.
- The Binomial distribution modelling the distribution of the number of "successes" in this sample would have mean $n P$.
- Let p be the proportion of type A ("successes") in your sample.
- This p has sampling distribution with mean P.

Chapter 9, Section 9 - Sampling Distribution of p

- Let p be the proportion of type A ("successes") in your sample.
- This p has sampling distribution with mean P.
- The standard deviation of the Binomial distribution modeling our sample is $\sqrt{n P(1-P)}$.
- Divide by n to get the standard error of p to be $\sigma_{p}=\sqrt{\frac{P(1-P}{n}}$.
- The sampling distribution is approximately normally distributed for large n.

