1. An element m of an R-module M is called a torsion element if there exists a nonzero $r \in R$ with $r m=0$.
(a) If R is an integral domain, show that the torsion elements form a submodule $\operatorname{tor}(M)$ of M. Also, show that $M / \operatorname{tor}(M)$ has no nonzero torsion elements (i.e. it is torsion free).
(b) Show that if R is not an integral domain, then the torsion elements need not form a submodule.
2. An R-module is called simple if it is not the zero module and if it has no proper submodule.
(a) Prove that any simple module is isomorphic to R / M, where M is a maximal left ideal.
(b) Prove Schur's Lemma: Let $\varphi: M \rightarrow M^{\prime}$ be a homomorphism of simple modules. Then either φ is zero, or else it is an isomorphism.
(c) Prove that $\operatorname{End}_{R}(M)$ is a division ring if M is simple.
3. Let R be a ring. Consider the ring $M_{n}(R)$ of $n \times n$ matrices with entries in R.
(a) Show that any two-sided ideal of $M_{n}(R)$ is of the form $M_{n}(I)$, all $n \times n$ matrices with entries in I, for some two-sided ideal I of R.
(b) Conclude that, if R is a simple ring, meaning that it has no nontrivial proper two-sided ideals, then the ring $M_{n}(R)$ is also simple.
(c) If R is a division ring, is the ring $M_{n}(R)$ simple?
4. For any index set T and R-modules $N, M_{t}, t \in T$, show that there are group isomorphisms

$$
\operatorname{Hom}_{R}\left(\bigoplus_{t \in T} M_{t}, N\right) \approx \prod_{t \in T} \operatorname{Hom}_{R}\left(M_{t}, N\right)
$$

and

$$
\operatorname{Hom}_{R}\left(N, \prod_{t \in T} M_{t}\right) \approx \prod_{t \in T} \operatorname{Hom}_{R}\left(N, M_{t}\right)
$$

5. How many group homomorphisms $\mathbb{Z} / 12 \mathbb{Z} \bigoplus \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 30 \mathbb{Z}$ are there?
6. An object A in a category \mathcal{C} is called an initial object if, for every object X in \mathcal{C}, there is a unique morphism $A \rightarrow X$. Similarly, an object Z is called a terminal object, if for every object X in \mathcal{C}, there is a unique morphism $X \rightarrow Z$.
(a) Prove that initial and terminal objects, if they exist, are unique up to unique isomorphism.
(b) In the category of rings (with $1 \neq 0$ and morphisms preserving 1), is there an initial object, a terminal object?
(c) Let A and B be objects in a category \mathcal{C}. Let $\mathcal{D}_{A B}$ be the category with objects all diagrams in \mathcal{C} of the form

$$
A \longrightarrow C \longleftarrow B
$$

and morphisms all commuting diagrams of the form

with the obvious notion of composition. What is the initial object in $\mathcal{D}_{A B}$ if it exists?
7. Show that pushouts and pullbacks exist in the category of R-modules.
8. Assume that

is a pushout diagram in a category \mathcal{C}. If f is an isomorphism, show that \bar{f} is also an isomorphism.
9. Show that there is a (noncommutative) ring R with $R \approx R \oplus R$, as R modules. Hint: Consider the endomorphism ring of an infinite-dimensional vector space.
10. (The Yoneda Lemma) Let $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{E}$ be a functor where \mathcal{E} is the category of sets. Show that for each object A of \mathcal{C} there is a bijection from the set $\mathcal{F}(A)$ to the set of all natural transformations from $\operatorname{hom}_{\mathcal{C}}(A,-)$ to \mathcal{F}.
11. A retraction of an R-module map $i: M^{\prime} \rightarrow M$ is an R-module map $r: M \rightarrow M^{\prime}$ such that $r \circ i=i d_{M^{\prime}}$. Let

$$
0 \longrightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{\pi} M^{\prime \prime} \longrightarrow 0
$$

be a short exact sequence of R-modules. If i has a retraction, show that $M \approx M^{\prime} \times M^{\prime \prime}$. What is the analogous statement in the category of groups?
12. Give a very short proof of the following standard fact in linear algebra: If $T: V \rightarrow W$ is a linear transformation, then $V \approx \operatorname{ker} T \oplus \operatorname{im} T$.
13. Show that $v=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ extends to a basis $\left\{v, v_{2}, \ldots, v_{n}\right\}$ of \mathbb{Z}^{n} if and only if the a_{i} are coprime, meaning $\left(a_{1}\right)+\cdots+\left(a_{n}\right)=(1)$ as ideals in \mathbb{Z}.
14. Let $A=\left[\begin{array}{lll}4 & 7 & 2 \\ 2 & 4 & 6\end{array}\right]$.
(a) If $\varphi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{2}$ is the homomorphism whose matrix with respect to the standard bases is A, determine the structure of the group $\mathbb{Z}^{2} / \operatorname{im} \varphi$ as the direct sum of cyclic groups. Find generators (as few as possible) for this quotient group.
(b) Determine all integer solutions to the system of equations $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
15. Show that if G is a subgroup of the free \mathbb{Z}-module \mathbb{Z}^{n}, then there are bases $\left\{a_{1}, \ldots, a_{k}\right\}$ of G and $\left\{b_{1}, \ldots, b_{n}\right\}$ of \mathbb{Z}^{n} such that for each of the basis elements a_{i} of G, there is a $d_{i} \in \mathbb{Z}$ with $a_{i}=d_{i} b_{i}$.
16. Let F be a field and $H \leq F^{\times}$a finite subgroup of the multiplicative group of units of F. Show that H is cyclic. (Hint: Use the characterization of cyclic groups in terms of their exponents.)
17. (a) Show that the group of rationals \mathbb{Q}^{+}under addition is not a free \mathbb{Z}-module, even though it's torsion free.
(b) Show that the torsion \mathbb{Z}-module $\mathbb{Q}^{+} / \mathbb{Z}^{+}$is not an infinite direct sum of cyclic groups.
18. (a) If M and N are finitely generated torsion modules over a PID R, show that

$$
\operatorname{Hom}_{R}(M, N) \approx \bigoplus_{p} \operatorname{Hom}_{R}\left(T_{p}(M), T_{p}(N)\right)
$$

where the sum is over a finite number of primes p of R.
(b) Describe the structure of the abelian group $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z})$ as a direct sum of cyclic groups (with as few summands as possible).
19. (a) Let V be a finite-dimensional vector space over any field. If $T^{2}=\mathrm{Id}$, $\operatorname{can} T$ be diagonalized? If so, what are the possible eigenvalues of T ?
(b) Same question but assume $T^{2}=T$,
(c) $T^{2}=0$.
20. How many \mathbb{Z}-bilinear maps are there from $\mathbb{Z} \times \mathbb{Z}$ to G, where G is any finite abelian group? Describe them explicitly.
21. Is it possible to define a multiplication which makes the additive group \mathbb{Q} / \mathbb{Z} into a ring?
22. Show that, in general, $M \otimes_{\mathbb{Z}} N \not \approx M \otimes_{R} N$, but that there is a surjection form one of these groups to the other. Describe, in a specific example, a nontrivial element of the kernel of this homomorphism.
23. Show that tensor products do not commute with products in general. Hint: Consider $\prod_{i} \frac{\mathbb{Z}}{\left(2^{i}\right)} \otimes \mathbb{Q}$.
24. Let V be a finite-dimensional k-vector space.
(a) Show that there is a linear transformation $T: V \otimes_{k} V^{*} \rightarrow k$ defined by $T(v \otimes \varphi)=\varphi(v)$.
(b) The contraction T corresponds to a linear transformation $\tau: \operatorname{End}_{k}(V) \rightarrow k$ via the isomorphism $V \otimes_{k} V^{*} \rightarrow \operatorname{Hom}_{k}(V, V)=\operatorname{End}_{k}(V):$

What familiar linear map is τ ?

