20. How many \mathbb{Z}-bilinear maps are there from $\mathbb{Z} \times \mathbb{Z}$ to G, where G is any finite abelian group? Describe them explicitly.
21. Is it possible to define a multiplication which makes the additive group \mathbb{Q} / \mathbb{Z} into a ring?
22. Show that, in general, $M \otimes_{\mathbb{Z}} N \not \approx M \otimes_{R} N$, but that there is a surjection form one of these groups to the other. Describe, in a specific example, a nontrivial element of the kernel of this homomorphism.
23. Show that tensor products do not commute with products in general. Hint: Consider $\prod_{i} \frac{\mathbb{Z}}{\left(2^{i}\right)} \otimes \mathbb{Q}$.
24. Let V be a finite-dimensional k-vector space.
(a) Show that there is a linear transformation $T: V \otimes_{k} V^{*} \rightarrow k$ defined by $T(v \otimes \varphi)=\varphi(v)$.
(b) The contraction T corresponds to a linear transformation $\tau: \operatorname{End}_{k}(V) \rightarrow k$ via the isomorphism $V \otimes_{k} V^{*} \rightarrow \operatorname{Hom}_{k}(V, V)=\operatorname{End}_{k}(V):$

What familiar linear map is τ ?

