Mathematics 111

Spring 2007
Homework 3

1. (Pullbacks) Given a ring A with identity and A-modules $M, M^{\prime}, M^{\prime \prime}$, consider the following diagram with A-linear maps f, g :

A pullback for this diagram (also called a fiber product of f and g) consists of the following data:
(a) An object X and A-linear maps $p: X \rightarrow M^{\prime}, q: X \rightarrow M^{\prime \prime}$ making the following diagram commute.

(b) For every commutative diagram of linear maps (same f, g)

there is a unique A-linear map $h: X^{\prime} \rightarrow X$ such that the following diagram commutes:

Let $X=\left\{\left(m^{\prime}, m^{\prime \prime}\right) \in M^{\prime} \times M^{\prime \prime} \mid f\left(m^{\prime}\right)=g\left(m^{\prime \prime}\right)\right\}, p$ and q the standard projections to the factors M^{\prime} and $M^{\prime \prime}$. Show that X together with the associated data form a pullback, i.e., verify that X is an A-module and that the universal mapping property (b) holds for this choice of X and maps p, q.
2. Let A be a ring, and consider two exact sequences of A-modules

$$
0 \longrightarrow K \longrightarrow P \xrightarrow{\varphi} M \longrightarrow 0 \quad 0 \longrightarrow K^{\prime} \longrightarrow P^{\prime} \xrightarrow{\varphi^{\prime}} M \longrightarrow 0
$$

where P and P^{\prime} are projective. Show that as A-modules $P \oplus K^{\prime} \cong P^{\prime} \oplus K$. Hint: Show there is an exact sequence

$$
0 \longrightarrow \operatorname{ker} \pi \longrightarrow X \xrightarrow{\pi} P \longrightarrow 0
$$

with ker $\pi \cong K^{\prime}$ and where X is the fiber product of φ and φ^{\prime} as in the first problem. From this deduce that $X \cong P \oplus K^{\prime}$. Similarly, show $X \cong P^{\prime} \oplus K$.

