# Mathematics 111 

Spring 2007
Homework 5

1. Show that a vector $v=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ extends to a basis $\left\{v, v_{2}, \ldots, v_{n}\right\}$ of $\mathbb{Z}^{n}$ if and only if the $a_{i}$ are coprime, that is $a_{1} \mathbb{Z}+\cdots+a_{n} \mathbb{Z}=\mathbb{Z}$. Hint: For one direction, come up with a short exact sequence that splits.
2. Let $A=\left(\begin{array}{lll}4 & 7 & 2 \\ 2 & 4 & 6\end{array}\right)$.
(a) If $\varphi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{2}$ is a $\mathbb{Z}$-linear map whose matrix with respect to the standard bases is $A$, determine the structure of the cokernel $\mathbb{Z}^{2} / \operatorname{Im}(\varphi)$ as a direct sum of cyclic groups. Find a minimal set of generators for this quotient Hint: The image of $\varphi$ is the span of the columns (i.e., the column space), and you may assume wlog that elementary column operations (over $\mathbb{Z}$ ) leave the column space unchanged.
Explain how your answer is connected to the elementary divisors theorem.
(b) Determine all integer solutions to $A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{0}{0}$. Hint: Elementary row operations (over $\mathbb{Z}$ ) do not change the kernel.
