Problem 6.1. Recall that $V = \{(1),(1\ 2\ 3\ 4),(1\ 3\ 2\ 4),(1\ 4\ 2\ 3)\} \leq S_4$ is a normal subgroup.

(a) Show that any transitive subgroup $G \leq S_4$ is equal to one of S_4, A_4, V or is isomorphic to either D_8 (three conjugate subgroups) or $\mathbb{Z}/4\mathbb{Z}$ (three conjugate subgroups). [Hint: see Figure 8 on page 110 of Dummit and Foote.]

(b) Suppose that $G \leq S_4$ is a transitive subgroup. Prove that the indices in the following table are correct.

<table>
<thead>
<tr>
<th>G</th>
<th>#$\langle G \cap V \rangle$</th>
<th>$[G : V \cap G]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>A_4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>D_8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>$\mathbb{Z}/4\mathbb{Z}$</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

(c) Compute the Galois groups of the following polynomials:

\[
f_1(X) = X^4 - X + 1, \quad f_2(X) = X^4 - X^3 + X^2 - X + 1
\]
\[
f_3(X) = X^4 - X^3 + 2X^2 + X + 1, \quad f_4(X) = X^4 - 2X^3 + 2X^2 + 2.
\]

(d) For each of the polynomials in part (c), and for each partition λ of 4, count the proportion of primes $p \leq 10^5$ with $p \nmid D(f_i)$ such that the factorization of f_i modulo p is given by λ. Assuming that these proportions are rational numbers with denominator dividing $\# \text{Gal}(f_i)$, give a conjecture for what they are (and how they relate to G).

Problem 6.2 (M4-1).

(a) What is the splitting field of $X^m - 1$ over \mathbb{F}_p?

(b) Show that there is a field homomorphism $\mathbb{F}_p^r \rightarrow \mathbb{F}_p^s$ if and only if $r | s$.

Problem 6.3. Let p be prime and define

\[a_n(p) = \#\{ f \in \mathbb{F}_p[X] : \deg f = n, \text{ f monic irreducible}\}.\]

(a) Show that $a_2(p) = (p^2 - p)/2$ and $a_3(p) = (p^3 - p)/3$.

(b) Use the equality

\[\sum_{d|n} da_d(p) = p^n\]

(which you may assume) to compute $a_n(2)$ for $n = 1, \ldots, 5$.

(c) Use (*) to prove that

\[\frac{p^n - 2p^{n/2}}{n} < a_n(p) \leq \frac{p^n}{n}.\]
Conclude that the probability that a random monic polynomial of degree \(n \) over \(\mathbb{F}_p \) is irreducible is roughly \(1/n \). (This is like the “prime number theorem” for \(\mathbb{F}_p[X] \).)

Problem 6.4 (M4-9). Let \(f(X) \) be an irreducible polynomial in \(\mathbb{Q}[X] \) with both real and nonreal roots. Show that its Galois group is nonabelian. Can the condition that \(f \) is irreducible be dropped?

Problem 6.5. Let \(\alpha = \sqrt{2} \) and \(\omega = (-1 + \sqrt{-3})/2 \). Show that \(\omega + c\alpha \) is a primitive element for \(K = \mathbb{Q}(\alpha, \omega) \) for all \(c \in \mathbb{Q}^\times \).