
Dartmouth College
Mathematics 81/111 — Homework 7

1. Consider the splitting field L of x4 − 2 over Q. The goal will be to characterize the
Galois group and to write down the complete lattice of subgroups of the Galois group
and the corresponding lattice of intermediate fields of the splitting field.

(a) Start by writing down some elements of the Galois group and prove they generate
the whole group. Determine the isomorphism class of this group.

(b) Next draw (and label) the lattice of subgroups of the Galois group.

(c) Finally for each subgroup H, find generators for the corresponding fixed field so
they have the form: LH = Q(α) or Q(α, β). Identify conjugate fields and the
automorphism that relates them.

2. Suppose that f ∈ Z[x] is an irreducible quartic whose splitting field over Q has Galois
group isomorphic to the symmetric group S4. You may find the lattice of subgroups of
A4 given below useful in this problem.

(a) Show that A4 is the only subgroup of index 2 in S4.

(b) Let θ be a root of f , and set K = Q(θ). Prove that K/Q is an extension of degree
four which contains no proper subfields.

(c) Are there any Galois extensions of degree four which contain no proper subfields?

Figure 1: Lattice of Subgroups of A4 from Dummit and Foote



3. Let L/K be a finite Galois extension of degree n, and put G = Gal(L/K). Let α ∈ L
and let f = minα,K be its minimal polynomial, say of degree d. Let h =

∏
σ∈G(x−σ(α)).

Show that h = fn/d.

4. Let f ∈ Q[x] be a polynomial of degree n ≥ 3, and let K be the splitting field of f over
Q. Suppose that Gal(K/Q) ∼= Sn, the symmetric group.

(a) Show that f is irreducible.

(b) If α is a root of f in K, show that Aut(Q(α)/Q) is trivial.

(c) If n ≥ 4 and α a root of f , show that αn 6∈ Q.

Some background. As preface to the next two problems, consider the following sit-
uation. Let f ∈ K[x] be a separable polynomial of degree n, L its splitting field over
K, and G = Gal(L/K). In the last homework set we showed that G embeds into the
symmetric group via a homomorphism induced by the action of G on the n distinct
roots, α1, . . . , αn of f . That is, we showed that each element σ ∈ G permutes the αi
(transitively if f is irreducible) and that σ is completely determined by this action. This
allows us to embed G as a subgroup of the symmetric group Sn.

Now viewing σ as a permutation, we can write σ in two useful fashions: (uniquely) as the
product of disjoint cycles, or as a product of transpositions, where the only uniqueness
in the later expression is that the number of transpositions always has the same parity.
Permutations are called even or odd depending on the parity of this expression, and
the set of even permutations forms a normal subgroup of index 2 in Sn called An, the
alternating group.

So given σ ∈ Sn consider its representation as a product of t disjoint cycles (including
1-cycles) having lengths n1, . . . , nt. These cycle lengths form a partition of n, that is
n = n1 + · · ·+nt. Also suppose that σ can be written as the product of s transpositions.

Then the sign of the permutation σ, sign(σ) = ±1, can be defined equivalently as

sign(σ) = (−1)n−t = (−1)s.

5. Now suppose that f is a monic, separable polynomial in K[x], L its splitting field, and
{α1, . . . , αn} its distinct roots. Define

∆(f) =
∏
i<j

(αi − αj), D(f) = ∆(f)2 =
∏
i<j

(αi − αj)2.

The quantity D(f) is called the discriminant of f .

(a) Show that for an element σ ∈ Sn, σ(∆(f)) = sign(σ)∆(f).

(b) Still identifying Gal(L/K) with its image in Sn, show that D(f) ∈ K.
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(c) With the same identification of Gal(L/K) ⊆ Sn, show that Gal(L/K) ⊆ An if and
only if ∆(f) ∈ K.

More background. If f ∈ Z[x] is a monic polynomial, then one can show D(f) ∈ Z,
and (as is clear from its definition) is nonzero iff f is separable. As a consequence if we
consider f modulo p, it is separable iff D(f) 6≡ 0 (mod p), so if f is separable, so is its
reduction mod p for all but the finite number of primes p | D(f).

So suppose that p - D(f). Then we can write

f ≡ f 1f 2 . . . f t (mod p),

where the f i are irreducible in Fp[x] of degree ni, so that the decomposition type of f
modulo p (n1, . . . , nt) is another partition of n. Note that I have purposely used the
same notation ni as well as the number t in both here and in the earlier discussion. This
is justified by the theorem of Frobenius.

Theorem. (Frobenius) The density of the set of primes p for which f has decomposition
type n1, . . . , nt (modulo p) exists, and is equal to the number of σ ∈ G (G the Galois
group of f) with cycle type n1, n2, . . . , nt.

So in particular, if f ≡ f 1f 2 . . . f t (mod p) as above, there is an element σ ∈ G with
cycle type n1, . . . , nt.

6. Let f(x) = x4 + 30x2 + 45. Show that the Galois group G of f over Q is cyclic of
order 4. As a small hint, it is easy to show f is irreducible over Z, and hence viewing
G as a subgroup of S4, it must be a transitive subgroup, and therefore one of Z2 ×
Z2,Z4, D8 (the group of order 8), A4, or S4. A starting point would be to show |G| ≤ 8.
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