Math 112: Geometric Group Theory
Fall 2015 - Assignment 1

Return date: Tuesday 09/22/15

keyword: graph morphism

exercise 1. Let Γ_1 and Γ_2 be two undirected graphs without singular vertices. Here a vertex v is called singular, if $\text{val}(v) = 0$. Let furthermore $f = (f_V, f_E) : \Gamma_1 \to \Gamma_2$ be a graph morphism.

a) Which of the following statements is true? (Please provide a proof or a counterexample)

- f_V is completely determined by f_E.
- f_E injective \Rightarrow f_V injective.
- f_E surjective \Rightarrow f_V surjective.
- f_V injective \Rightarrow f_E injective.
- f_V surjective \Rightarrow f_E surjective.

b) Which of the above statements are true, if Γ_1 and Γ_2 are two directed graphs without singular vertices?