exercise 2. Draw a Cayley graph of the following groups.

a) D_5 with two generators.
 Note: Let $P_5 \subset \mathbb{R}^2$ be a regular pentagon. The dihedral group D_5 is the subgroup of isometries of \mathbb{R}^2 that maps P_5 onto itself. This group consists of 5 rotations and 5 reflections.

b) Draw the Cayley graph of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$ with the generators $(1,0)$ and $(0,1)$.

exercise 3. Find two groups G_1, G_2 such that the corresponding undirected Cayley graphs Γ_1 and Γ_2 are isomorphic, but G_1 and G_2 are not isomorphic as groups.

exercise 4. Let $T = (V,E,\delta)$ be a tree with a finite number of edges and vertices. A vertex $v \in V$ is called leaf of T, if $\text{val}(v) = 1$.

a) Show that $\#V = \#E + 1$.

b) Let $\#V \geq 2$. Let furthermore $L = (v_i, \text{val}(v_i))_{i=1,\ldots,m}$ be a list of vertices v_i of T with valence $\text{val}(v_i) \geq 3$. Determine a formula that calculates the number of leaves of T form the list L.

exercise 5. Show that any connected undirected graph with countably many vertices and edges contains a spanning tree. A spanning tree is a subgraph which is a tree that contains all vertices of the graph itself.