MATH 113 - ANALYSIS SPRING 2015 FINAL EXAMINATION

DURATION: 4 HOURS

This exam consists of five independent problems. You may treat them in the order of your choosing.

If you were not able to solve a question but wish to use the result to solve another one, you are welcome to do so, as long as you indicate it explicitly.

PROBLEM 1

Let $\{\alpha_n\}_{n\geq 0}$ be a bounded sequence of complex numbers and S the map defined on $\ell^2(\mathbb{N})$ by

$$S(u_0, u_1, \ldots) = (0, \alpha_0 u_0, \alpha_1 u_1, \ldots).$$

1. Verify that $S \in \mathcal{B}(\ell^2(\mathbb{N}))$ and compute its operator norm.

2. Determine the adjoint of *S*.

3. Is S a normal operator?

4. Are there sequences $\{\alpha_n\}_{n\geq 0}$ such that S is an isometric embedding? An isometry?

Problem 2

Let \mathcal{H} be a separable Hilbert space and $A \in \mathcal{B}(\mathcal{H})$. Define an operator A^{\dagger} on \mathcal{H}^{*} by

$$A^{\dagger}\varphi = \varphi \circ A.$$

- **1.** Verify that $A^{\dagger} \in \mathcal{B}(\mathcal{H}^*)$.
- **2.** What is the relation between A^{\dagger} and the adjoint A^{*} of A?

Problem 3

Let \mathcal{H} be a separable Hilbert space and $T \in \mathcal{B}(\mathcal{H})$. Recall that if T is **hermitian**, then $||T|| = \sup\{|\langle T\xi | \xi \rangle|, ||\xi|| = 1\}.$

- **1.** Assume T hermitian such that $T\xi \perp \xi$ for all $\xi \in \mathcal{H}$.
 - **a.** What can be said of T?
 - **b.** Does the result hold if T is not hermitian?

Let A be an arbitrary element of $\mathcal{B}(\mathcal{H})$

2. Find an operator $B \in \mathcal{B}(\mathcal{H})$ such that

$$||A\xi||^{2} - ||A^{*}\xi||^{2} = \langle B\xi | \xi \rangle$$

for all $\xi \in \mathcal{H}$.

3. Prove that A is normal if and only if $||A\xi|| = ||A^*\xi||$ for all $\xi \in \mathcal{H}$.

Problem 4

Let \mathcal{A} be a unital Banach algebra, with unit denoted by 1, and a, b elements of \mathcal{A} .

1. Let $\lambda \in \mathbb{C}^{\times}$ be such that $\lambda - ab$ is invertible. Prove that $\lambda - ba$ is invertible, with inverse

$$\lambda^{-1} + \lambda^{-1}b(\lambda - ab)^{-1}a.$$

- **2.** Prove that $\operatorname{Sp}_{\mathcal{A}}(ab) \cup \{0\} = \operatorname{Sp}_{\mathcal{A}}(ba) \cup \{0\}.$
- **3.** Prove that *ab* and *ba* have the same spectral radius.
- **4.** Give an example of elements a and b in a Banach algebra such that $\text{Sp}_{\mathcal{A}}(ab) \neq \text{Sp}_{\mathcal{A}}(ba)$.

Problem 5

Let E and F be Banach spaces.

1. Prove that every weakly convergent sequence in E is bounded.

Let $\{x_n\}_{n\in\mathbb{N}}$ be a weakly convergent sequence in E, with weak limit x and $T: E \longrightarrow F$ a bounded linear map.

2. Prove that the sequence $\{Tx_n\}_{n\in\mathbb{N}}$ converges weakly to Tx.

From now on, assume that T is **compact**, that is, the image by T of the closed unit ball of E is compact in F.

3. Show that every subsequence of $\{Tx_n\}_{n\in\mathbb{N}}$ has a subsequence that converges (strongly) to Tx.

4. Conclude that Tx_n converges strongly to Tx.